\square

THE

WORKS OF ARISTOTLE

TRANSLATED INTO ENGLISH UNDER THE EDITORSHIP OF

W. D. ROSS M.A.

FELLOW AND TUTOR OF ORIEL COLLEGE

VOLUME VI

OPUSCULA
BY

T. LOVEDAY
E. S. FORSTER
L. D. DOWDALL
H. H. JOACHIM

NOTE

Professor J. A. Smith has retired from the position of joint-editor of this series, but will act as a general adviser.

The Index has been made by Messrs. Forster and Loveday, with the aid (as regards the De Mirabilibus Auscultationibus) of Mr. Dowdall.
W. D. R.

Feb. 1913.

CONTENTS

DE COLORIBUSBy T. Loveday and E. S. Forster.
DE AUDIBILIBUSBy T. Loveday and E. S. Forster.
PHYSIOGNOMONICABy T. Loveday and E. S. Forster.
DE PLANTISBy E. S. Forster.
DE MIRABILIBUS AUSCULTATIONIBUS
By L. D. Dowdall.
MECHANICABy E. S. Forster.
DE LINEIS INSECABILIBUS
By H. H. Joachim.
VENTORUM SITUS ET COGNOMINABy E. S. Forster.
DE MELISSO, XENOPHANE, GORGIA
By T. Loveday and E. S. Forster.
INDEX

DE COLORIBUS

BY

T. LOVEDAY

M.A., LECTURER IN PHILOSOPHY IN THE UNIVERSITY OF SHEFFIELD

AND

E. S. FORSTER

M.A, LECTURER IN GREEK IN THE UNIVERSITY OF SHEFFIELD

OXFORD

AT THE CLARENDON PRESS
1913

PREFACE

Bотн the method and the style of this treatise are unlike Aristotle's, and its contents differ considerably from his known views. But it is very likely a Peripatetic product, and has been ascribed (though without much probability) to Theophrastus, as also to the convenient Strato. Prantl's Aristoteles über die Farben (1849) has, of course, been of great use to us, and his text in the Teubner edition (1881) has in the main been followed.

We take this opportunity of expressing our obligation to Mr. W. D. Ross for many valuable suggestions.

T. L.
E. S. F.

CONTENTS

CHAP.

I. The simple colours, and black.
2. Secondary and tertiary colours. Observations on methods.
3. Causes of variety of colours.
4. Coloration by tincture.
5. Colours of plants.
6. Colours of animals.

DE COLORIBUS

I Simple colours are the proper colours of the elements, 791 ${ }^{\text {a }}$ i.e. of fire, air, water, and earth. Air and water when pure are by nature white, fire (and the sun) yellow, and earth is naturally white. The varicty of hues which earth assumes is due to coloration by tincture, as is shown by the fact 5_{5} that ashes turn white when the moisture that tinged them is burnt out. It is true they do not turn a pure white, but that is because they are tinged afresh, in the process of combustion, by the smoke, which is black. And this is the reason why lye-mixture turns yellow, the water being coloured by hues of flame and black. ${ }^{1}$

Black is the proper colour of elements in process of ro transmutation. The remaining colours, it may easily be seen, arise from blending by mixture of these primary colours.

Darkness is due to privation of light. For we sec black under three different conditions. Either (I) the object of vision is naturally quite black ${ }^{2}$ (for black light is always ${ }^{1} 5$ reflected from black objects) ; or (2) no light at all passes to the eyes from the object (for an invisible object surrounded by a visible patch looks black) ; and (3) objects

[^0]always appear black to us when the light reflected from them is very rare and scanty. This last condition is the 20 reason why shadows appear black. It also explains the blackness of ruffled water, e.g. of the sea when a ripple passes over it: owing to the roughness of the surface few rays of light fall on the water and the light is dissipated, and so the part which is in shadow appears black. The same ${ }_{25}$ principle applies to very dense cloud, and to masses of water and of air which light fails to penetrate: for water and air look black when present in very deep masses, because of the extreme rarity ${ }^{1}$ of the rays reflected, the parts of the mass between the illuminated surfaces being in darkness and therefore looking black. There are many arguments to prove that darkness is not a colour, but merely privation of light, the best being that darkness, unlike all 5 other objects of vision, is never perceived as having any definite magnitude or any definite shape.

Light is clearly the colour of fire ; for it is never found with any other hue than this, and it alone is visible in its own right, whilst all other things are rendered visible by it. 10 But there is this point to be considered, that some things, ${ }^{2}$ though they are not in their nature fire nor any species of fire, yet seem to produce light. So we cannot say in the same breath, 'The colour of fire is identical with light, and yet light is the colour of other things besides fire,' but we can say, 'This hue is to be found in other things besides 15 fire, and yct light is the colour of fire.' Anyhow, it is only by aid of light that fire is rendered visible, just as all other objects are made visible by the appearance of their colour.

The colour black occurs when air and water are thoroughly burnt by fire, and this is the reason why burning objects so turn black, as e.g. wood and charcoal when the fire is put out, and smoke from clay ${ }^{3}$ as the moisture is gradually secreted and burnt. This is also why the blackest smoke is given off by fat and greasy substances like oil and pitch and resinous wood, because these objects burn most com-

[^1]pletely, and the process of combustion is most continuous in them.

Again, things turn black through which water percolates, 25 if they first become coated with lichen and then the moisture dries off. The stucco on walls is an example of this, and much the same applies to stones under water, which get $792^{\text {a }}$ covered with lichen and turn black when dried.

This then is the list of simple colours.
2 From these primary colours the rest are derived in all their variety of chromatic effects by blending of them and by their presence in varying strengths. ${ }^{1}$ The different 5 shades of crimson and violet depend on differences in the strength of their constituents, whilst blending is exemplified by mixture of white with black, which gives grey. So a dusky black mixed with light gives crimson. For observation teaches us that black mixed with sunlight or firelight io always turns crimson, and that black objects heated in the fire all change to a crimson colour, as e.g. smoky tongues of flame, or charcoal when subjected to intense heat, are seen to have a crimson colour. But a vivid bright violet is 15 obtained from a blend of feeble sunlight with a thin dusky white. That is why the air sometimes looks purple at sunrise and sunset, for then these conditions are best realized, the air being dusky and the impinging rays feeble. 20 So, too, the sea takes a purple hue when the waves rise so that one side of them is in shadow : the rays of the sun strike without force on that slope and so produce a violet colour. The same thing may also be observed in birds'
${ }^{1} 792^{\text {a }} 4$. ${ }^{\tau \varphi} \mu \hat{\mu} \lambda \lambda o \nu$ кaì $\bar{\eta} \tau \tau o \nu . \operatorname{In} 792^{\text {a }} 3-9$ it seems that differences of 'degree' are identical with differences $\tau \Phi$ One might translate by 'differences in saturation ' if this did not imply varying amounts of colourless light, such as are distinguished from differences of degree by 793^{2} I-5. The vaguer word 'strength' seems preferable. But the example of crimson and violet is obscure. It cannot be meant that the difference between these colours depends on differences of strength in their constituents, for we are to learn that they have different constituents. The meaning may be either that differences in the strength of these colours affect their derivatives, which ought not to be mentioned until the discussion of tertiary colours later on in this chapter, or, as in the rendering above, that different shades of each of these colours depend on the strength of their respective constituents, when strictly it should not be mentioned until chap. 3 .

25 wings, which get a purple colour if extended against the light, but if the amount of light falling on them is diminished the result is the dark colour called brown, whilst a great quantity of light blended with primary black gives crimson. Add vividness and lustre, and crimson changes to flamecolour.

For ${ }^{1}$ it is after this fashion that we ought to proceed in treating of the blending of colours, starting from an observed colour as our basis and making mixtures with it. (But we must not assign to all colours a similar origin, ${ }^{2}$ for there are some colours which, though not simple, bear
${ }^{1} 792^{\mathrm{a}} 29^{-\mathrm{b}} 32$. The text of this passage is probably beyond repair, and the meaning is very doubtful. The rendering above assumes alterations of $\pi \rho$ ós to $\pi \omega$ s before $\mu i \xi t \nu$ in 1.34 (with Prantl); of $792^{\text {b }}$ I

 $\dot{\eta} \lambda \omega \omega \delta \hat{i} s, \tau 0 \hat{v} \dot{\eta} \lambda i o v$, or some such words; and also the rejection of Prantl's $\mu \dot{\prime}$ in 1. 2 and his $\mu \mu \dot{r}_{i} \sigma \epsilon \omega s$ in 1. 12, and the omission of кai in 1. I4. But the words $\pi \omega s$ (or $\pi \rho o ̀ s) \mu i \xi \iota \omega$ évòs è $\chi \in t \nu$ are probably corrupt. With $\pi \rho$ ós they are untranslatable. With $\pi \omega s$ they can have only the meaning given above, for they cannot mean that a simple colour may be called a mixture in a sense of one colour, viz. itself, for then a simple colour will not have the same relation either to itself or to a secondary colour like crimson that crimson has to a tertiary colour; for crimson to produce a tertiary colour must be mixed with a colour not itself, and if mixed with itself does not give a tertiary colour. If $792^{\text {b }} \mathrm{I}$ is not emended, it must mean that the relation which secondary colours bear to tertiary is not so easily established in the tertiary product as the relation of primary colours to secondary in the secondary. This involves a forced construction, but if $\epsilon v \sigma \eta \mu \circ \nu$ is taken as the object of катабкєvá̧єเข, then whether you supply $\mu i \xi \iota \nu$ or $\chi \rho \bar{\omega} \mu a$ the result is nonsensical, for it is not the product which is obscure, but its constituents. Thus some emendation seems necessary. In the next sentence Prantl inserts $\mu \dot{\eta}$ after àvá $\gamma \kappa \eta$, in which case it would seem necessary to emend $\ddot{\epsilon} \mu \phi a \sigma \iota \nu$, perhaps to ${ }_{\epsilon} \mu \phi \dot{\alpha} \nu \iota \sigma \iota \nu$. But it seems possible to translate without $\mu \dot{\eta}$, if the emendation of ϵi каi $\mu \dot{\eta} \ldots \pi$. . $\pi \kappa \epsilon \bar{i}$ is accepted, the stress of the argument falling on similarity of origin of colours in mixture and not on difference according as they are or are not derived directly from primary colours.

In the sentence $792^{b} 5-1$ I it is evident that $\bar{\eta}$ epoet $\delta \in i ̂$ is not genuine. It makes no sense, and in all other passages $\left(793^{\mathrm{b}} 5,794^{\mathrm{a}} 4,795^{\mathrm{b}}\right.$ I 9 , $797^{\text {a }} 7$) the form used is depoєt $\delta \dot{\eta} s$. Possibly the reading should be $\dot{\eta} \lambda \iota \omega \delta \epsilon i s$, which gives a sense consonant with the rest of the treatise, as long as it is remembered that wine colour (which is a tertiary colour) requires not only sunlight and black but also crimson as its constituents. Cf. $795^{\text {b }} 28$. It is possible that фotvкผ̂ $\chi \rho \omega \dot{\mu} \mu a \tau \iota$ or some such words should be inserted after $\sigma \tau i \lambda \beta$ ovtı. It is also clear that ä̉ $\lambda o v \rho \gamma \epsilon s$ in 1. Io is used loosely, for it is a secondary colour, and not strictly equivalent to oivãóv.
${ }^{2} 792^{2} 29$. Sc. directly from simple colours.
the same relation to their products ${ }^{1}$ that simple colours bear to them, ${ }^{2}$ inasmuch as a simple colour has to be mixed with one other colour to produce them. ${ }^{3}$) And when the $792^{\text {b }}$ constituents are obscure in the compound product, we must still try to establish our conclusions by reference to observation. For, ${ }^{4}$ whether we are considering the blend which gives (say) violet or crimson, or whether we are considering the mixtures of these colours which produce other tints, we must explain their origin on the same kind of principles, ${ }^{5}$ even though they look dissimilar. So we must start from: a colour previously established, and observe what happens when it is blent. Thus we find that wine colour results from blending rays of sunlight with pure lustrous black, as may be seen in grapes on the bunch, which grow winecoloured as they ripen; for, as they blacken, their crimson turns to a violet. After the manner indicated we must treat 10 all differences of colours, getting comparisons by moving coloured objects, ${ }^{6}$ keeping our cye on actual phenomena, assimilating different cases of mixture on the strength of the particular known instances in which a given origin and blending produce a certain chromatic effect, ${ }^{7}$ and verifying our results. But we must not proceed in this 1_{5} inquiry by blending pigments as painters do, but rather by comparing the rays reflected from the aforesaid known colours, this being the best way of investigating the true nature of colour-blends. Verification from experience and 20 observation of similarities are necessary, if we are to arrive at clear conclusions about the origin of different colours, and the chicf ground of similarities is the common origin
${ }^{1} 792^{\mathrm{a}} 33$. Sc. tertiary colours.
${ }^{2} 792^{2} 34$. tiavtú. $S c$. the secondary colours.
${ }^{8} 792^{2} 34$. Understand, 'and they have each to be mixed with another colour to produce the tertiary colours.'
${ }^{4} 792^{\mathrm{b}}$ 2. Understand, 'though we must not try to derive all colours directly from simple.'
${ }^{5} 792^{\mathrm{b}}$ 3. $\delta \mu$ oi ω s. i.e. 'from an observed colour.'
${ }^{6} 792^{\mathrm{b}}$ 12. Єk $\kappa \iota v \eta \sigma \epsilon \omega$. i.e. from moving coloured objects in different lights or in different positions to the light, as Schneider suggests. Prantl's emendation, $\mu \mu \mu_{i} \sigma \epsilon \omega s$, is at least as unlikely as the traditional text.
${ }^{7} 792^{\text {b }}$ 14. Omit кai with Schneider. As Schneider says, тà katà
 primary colours.
of nearly all colours in blends of different strengths of 25 sunlight and firelight, and of air and water. At the same time we ought to draw comparisons from the blends of other colours, as well as the primary, with rays of light. Thus charcoal and smoke, and rust, and brimstone, and birds' plumage blent, some with firclight and others with 3_{0} sunlight, produce a great variety of chromatic effects. And we must also observe the results of maturation in plants and fruit, and in hair, feathers, and so on.

We must not omit to consider the several conditions 3 which give rise to the manifold tints and infinite variety of colours. It will be found that variations of tint occur :
$793^{\text {a }}$ (1) Because colours are introcepted by varying and irregular strengths of light and shade. ${ }^{1}$ For both light and shade may be present in very different strengths, and so whether pure or already mixed with colours they alter 5 the tints of the colours they introcept.

Or (2) because the colours blent vary in fullness and in effectiveness.

Or (3) because they are blent in different proportions.
Thus violet and crimson and white and all colours vary 10 very much both in strength and in intermixture and purity.
(4) Difference of hue may also depend on the relative brightness and lustre or dimness and dullness of the blend. Lustre is simply continuity and density of light ; e.g. we have a glistening gold colour when the yellow colour of sunlight is highly concentrated and therefore lustrous. 15 That explains why pigeons' necks and drops of falling water look lustrous when light is reflected from them.

Again, (5) some objects change their colour and assume a variety of hues when polished by rubbing or other means, like silver, gold, copper, and iron, when they are polished; 20 and some kinds of stones give rise to different colours,

[^2]like . . . ${ }^{1}$ which are black but make white marks. This is because the original composition of all such substances is of small dense and black particles, but in the course of their formation they have been tinged, and all the pores through which the tincture passed have taken its colour, so that finally the whole material appears to be of that colour. 2_{5} But the dust that is rubbed off from them loses this golden or copper colour (or whatever the hue may be), and is quite black, because rubbing breaks up the pores through which the tincture passed, and black is the original colour of the substance. ${ }^{2}$ The other colour is no longer apparent because 30 the colouring matter is dissipated, and so we see the original natural colour of the material, and this is why these substances all appear black. But when rubbed against a smooth and even surface, as e.g. against a touchstone, they $793^{\text {b }}$ lose their blackness and get back their other colour, which comes through where the lines of the tincture in the pores are unbroken and continuous. ${ }^{3}$
(6) In the case of objects burning, dissolving, or melting in the fire, we find that those have the greatest variety which are dark in colour and give off a thin hazy smoke, 5 such as the smoke of brimstone or rusty copper vessels, and those which, like silver, are dense and smooth.
(7) Apart from these cases, varicty of hue is characteristic of all dark smooth objects, such as water, clouds, and birds' plumage. For these last, owing to their smoothness 10 and the variety of blends into which the impinging rays of light enter, show various colours, as also does . . .4
(8) Lastly, we never see a colour in absolute purity: it is always blent, if not with another colour, then with rays I_{5} of light or with shadows, and so it assumes a new tint. That is why objects assume different tints when seen in
${ }^{1} 793^{\mathrm{a}} 20,21$. The name of the stone has dropped out. Galactites, slate, and other substances have been suggested. Prantl rightly observes that the argument requires $\lambda a \mu \beta$ ávovaı in place of γp cí $\phi o v \sigma \iota$.
${ }^{2} 793^{\text {a }} 30$. The text is corrupt, but the general sense is plain.

 बvעєхєia must refer to the pores, in contrast to àvappíyvvo $\theta a a$ above.
${ }^{4} 793^{\text {b }}$ 12. As Prantl says, σ кótos is certainly corrupt, and the name of some smooth dark substance has dropped out.
shade and in light and sunshine, and according as the rays of light are strong or weak, and the objects themselves slope this way or that, and under other differential conditions.
20 Again, they vary when seen by firelight or moonlight or torchlight, because the colours of those lights differ somewhat. They vary also in consequence of mixture with other colours, for when coloured light passes through a medium of another colour it takes a new tinge. For if light falls on a given object and is coloured by it (say) crimson or herb-green, and then the light reflected from that object ${ }_{2} 5$ falls on another colour, it is again modified by this second colour, and so it gets a new chromatic blend. This happening to it continuously, though imperceptibly, light when it reaches the cye may be a blend of many colours, though the sensation produced is not of a blend but of some colour 30 predominant in the blend. This is why objects under water tend to have the colour of water, and why reflections in mirrors resemble the colour of the mirrors, and we must suppose that the same thing happens in the case of air. Thus all hues represent a threefold mixture of light, a trans$794^{\text {a }}$ lucent medium (e.g. water or air), and underlying colours from which the light is reflected. A translucent white medium, when of a very rare consistency, looks hazy in colour ; but if it is dense, like water or glass, or air when 5 thick, a sort of mist covers its surface, because the rays of light are inadequate at every point on it owing to its density, and so we cannot see the interior clearly. Air seen close at hand appears to have no colour, for it is so rare 1o that it yields and gives passage to the denser rays of light, which thus shines through it ; but when seen in a deep mass it looks practically dark blue. This again is the result of its rarity, for where light fails the air lets darkness through. ${ }_{15}$ When densified, air is, like water, the whitest of things.

Coloration may also be due to a process of tincture $\mathbf{4}$ or dyeing, when one thing takes its hue from another. Common sources of such coloration are the flowers of plants and their roots, bark, wood, leaves, or fruit, and 20 again, earth, foam, and metallic inks. Sometimes colora-
tion is due to animal juices (e.g. the juice of the purplefish, with which clothes are dyed violet), in other cases to wine, or smoke, or lye mixture, or to sea-water, as happens, for instance, to the hair of marine animals, which is always turned red by the sea. In short, anything that has a colour of its own may transfer that colour to other things, and 25 the process is always this, that colour leaving one object passes with moisture and heat into the pores of another, which on drying takes the hue of the object from which the colour came. This explains why colour so often washes out: the dye runs out of the pores again. Furthermore, steeping material to be dyed in different astringent solutions 30 during the dyeing produces a great variety of hues and mixtures, and these are also affected by the condition of the material itself, in much the same way that blending of colours was shown in the last chapter to be affected. Even black fleeces ${ }^{1}$ are used for dycing, but they do not take so bright a colour as white. The reason is that whilst the pores of the wool are tinged by the dye that enters them, the intervals of solid hair between the pores do not take $794^{\text {b }}$ the colour, and if they are white, then in juxtaposition to the colour of the pores they make the dye look brighter, but if they are black, they make it look dark and dull. For the same reason a more vivid brown is obtained on 5 black wool than on white, the brown dye blending with the rays of black and so looking purer. For the intervals between the pores are too small to be separately seen, just as tin is invisible when blent with copper in bronze ; and there are other parallel cases.

10
These then are the reasons for the changes in colour produced by dyeing.

5 As for hair and feathers and flowers and fruit and all plants, it is abundantly clear that all the changes of colour which they undergo coincide with the process of maturation. But what the origins of colour in the various classes of 15 plants are, and what kinds of changes these colours undergo, and from what materials these changes are derived, and

[^3]the reasons why they are thus affected, and any other difficulties connected with them-in considering all these questions we must start from the following premises. In all 20 plants the original colour is herb-green; thus shoots and leaves and fruit begin by taking this colour. This can also be seen in the case of rain-water; when water stands for a considerable time and then dries up, it leaves a herb-green 25 behind it. So it is intelligible why herb-green is the first colour to form in all plants. For all water in process of time first turns yellow-green on blending with the rays of the sun ; it then gradually turns black, and this further mixture of black and yellow-green produces herb-green. For, as has already been remarked, moisture becoming 30 stale and drying up of itself turns black. This can be seen, for example, on the stucco of reservoirs; here all the part that is always under water turns black, because the moisture, as it cools, dries up of itself, but the part from which the water has been drawn off, and which is exposed to the sun, becomes herb-green, because yellow mingles with the black. Moreover, with the increasing blackness of the moisture, the herb-green tends to become very deep and of a leek-green hue. This is why the old shoots of all plants 5 are much blacker than the young shoots, which are yellower because the moisture in them has not yet begun to turn black. In the older shoots, the growth being slow and the moisture remaining in them a long time, owing to the fact that the liquid, as it cools, turns very black, a leek-green 10 is produced by blending with pure black. But the colour of shoots in which the moisture does not mix with the rays of the sun, remains white, unless moisture has settled in them and dried and turned black at an earlier stage. In all plants, therefore, the parts above ground are at first of a yellow-green, while the parts under the ground, namely the lower portions of the stalks and the roots, are white. The shoots, too, are white as long as they are underground, 15 but if the earth be removed from round them, they turn herb-green ; and all fruit, as has been already said, becomes herb-green at first, because the moisture, which passes through the shoots into it, has a natural tendency to assume
this colour and is quickly absorbed to promote the growth of the fruit. But when the fruit ceases to grow because 20 the liquid nourishment which flows into it no longer predominates, but the moisture on the contrary is consumed by the heat-then it is that all fruit becomes ripe; and the moisture already present in it being heated by the sun and the warmth of the atmosphere, each species of fruit takes 2_{5} its colour from its juice, just as dyed material takes the hue of the colouring matter in which it is steeped. This is why fruits colour gradually, those parts of them which face the sun and heat being most affected ; it is also the reason why all fruits change their colour with the changing seasons. This explanation agrees with the observed facts; for all 30 fruits, as soon as they begin to ripen, change from herbgreen to their normal proper colour. They become white and black and grey and yellow and blackish ${ }^{\mathbf{1}}$ and dusky and crimson and wine-coloured and saffron-in fact, assume 795 practically every variety of colour. Since most hues are the result of the blending of several colours, the hues of plants must certainly also be due to the same blends ; for the mois- : ture percolating through the plants washes and carries along with it all the ingredients on which their colours depend. When this moisture is heated up by the sun and the warmth of the atmosphere at the time of the ripening of the fruit, each of the colours forms separately, some quickly and some slowly. The same thing happens in the 10 process of dyeing with purple; when, after breaking up the shell and extracting ${ }^{2}$ all the moisture from it, they pour it into earthenware vessels and boil it, at first no definite colour is noticeable in the dye, because, as the 1_{5} liquid boils more and more and the colours still remaining in the vessels mix together, each of the hues gradually undergoes a great varicty of alterations; for black and white and brown and hazy shades appear, and finally the dye all turns purple, when the colours are sufficiently boiled
${ }^{1} 795^{-a} 33$. $\mu \epsilon \lambda a v 0 \epsilon \epsilon \delta \in i s$ should perhaps be omitted; it is apparently
 бкเоє $\delta \in i$ is following.
 adopted).

20 up together; so as a result of the blending no other colour is separately noticeable. This is just.t what happens with fruit. In many instances, because the maturing of all the colours does not take place simultaneously, but some colours form earlier and others later, changes from one ${ }_{25}$ to another take place, as in the case of grapes and dates. Some of these are crimson at first; but when black colour forms in them, they turn to a wine colour, and in the end they become of a dark-bluish hue, when the crimson is 30 finally mixed with a large quantity of pure black. For the colours which appear late, when they predominate, change the earlier colours. This is best seen in black fruits;
$796^{\text {a }}$ for, broadly speaking, most of them, as has already been remarked, first change from herb-green to a pinkish shade and become reddish, but quickly change again from the reddish hue and become dark blue because of the pure black present in them. The presence of crimson is proved 5 by the fact that the twigs and shoots ${ }^{1}$ and leaves of all such plants ${ }^{2}$ are crimson, ${ }^{3}$ because that colour is present in them in large quantities; while that black fruits partake of both colours ${ }^{4}$ is clear from the fact that their juice is always of a wine colour. Now the crimson hues come into ro existence at an earlier stage in growth than the black. This is clear from the fact that pavement upon which there is any dripping, and, generally speaking, any spot where is a slight flow of water in a shady place, always turn first from herb-green to a crimson colour, and the pavement r_{5} looks as though blood had lately been shed over all the portion of it on which the herb-green colour has matured ; then finally this also becomes very black and of a darkbluish colour. The same thing happens in the case of fruit. That change in the colour of fruit occurs by the formation of a fresh colour, which ousts the earlier one, can easily

[^4]be seen from the following examples. The fruit of the 20 pomegranate and the petals of roses are white at first, but in the end, when the juices in them arc beginning to be tinged as they mature, they alter their colours and change to violet and crimson hues. Other parts of plants have a number of shades, for example the juice of the poppy ${ }_{25}$ and the scum of olive oil ; for this is white at first, as is the fruit of the pomegranate, but, after being white, ${ }^{1}$ it changes to crimson, and finally mingling with a large quantity of black it becomes of a dark-bluish hue. So, too, 30 the petals of the poppy are crimson at their ends, because the process of maturation takes place quickly there, but at their base they are black, because this colour is already predominant at that end ; just as it predominates in the $\mathbf{7 9} \mathbf{6}^{\mathbf{b}}$ fruit, which also finally becomes black.

In the case of plants which have only one colour-white, for example, or black or crimson or violet-the fruit always keeps a single kind of colour, when once it has changed from 5 herb-green to another colour. Sometimes the blossoms are of the same colour as the fruit-as, for instance, in the pomegranate, the fruit and blossoms of which are both crimson ; but sometimes they are of very dissimilar huesas, for example, in the bay-tree and the ivy, whose blossoms io are always yellow, but their fruit respectively black and crimson. The same is true of the apple-trec ; its blossom is white with a tinge of pink, while its fruit is yellow. In the poppy the flower is crimson, but the fruit may be black I_{5} or white, according to the different time at which the juices present in the plant ripen. The truth of the last statement can be seen from many examples; for, as has been said, some fruits come to differ greatly as they ripen. This is 20 why the peculiar odours and flavours of flowers and fruits differ so much. This effect of the time of ripening is still more evident in the actual blossoms. For part of the same petal may be black and part crimson, or, in other cases, part white and part purplish. The best example of all is 25 the iris; for its blossom shows a great variety of hues

[^5]according to the different states of maturation in its different parts, just as grapes do when they are already ripening. Therefore the extremities of blossoms always ripen most completely, whilst the parts near the vital principles of the 30 plant have much less colour ; for in some cases the moisture is, as it were, burnt out before the blossom undergoes its proper process of maturation. It is for this reason that the blossoms remain the same in colour, while the fruit changes as it grows riper ; for the former, owing to the presence of $797^{\text {a }}$ only a small amount of nutriment, soon over-mature, while the fruit, owing to the presence of a large quantity of moisture, changes as it ripens to all the various hues which are natural to it. This can also be seen, as has already been remarked, in the process of colour-dyeing. When in dyeing 5 purple they put in the colouring matter from the vein of the purple-fish, ${ }^{1}$ at first it turns brown and black and hazy; but when the dye has been boiled sufficiently, a vivid, bright violet appears. So it must be from similar reasons that the blossoms of a plant frequently differ in colour from its ro fruit, and that some pass to a stage beyond, whilst others never attain to their natural colour, according as they do or do not mature thoroughly. For these reasons, then, blossoms and fruit differ from one another in their colouring. ${ }^{15}$ The leaves of most trees turn yellow in the end, because, owing to the failure of nutriment, they become dried up before they change to their natural colour ; just as some of the fruits also which fall off are yellow in colour, because here too nutriment fails before they mature. Furthermore, corn and in fact all plants turn yellow in the end. ${ }_{20}$ This change of colour is due to the fact that the moisture in them no longer turns black owing to the rapidity with which it dries up. As long as it turns black and blends with the yellow-green, it becomes herb-green, as has already been said; but, since the black is continually becoming 25 weaker, the colour gradually reverts to yellow-green and

[^6]finally becomes ycllow. The leaves of the pear-tree and the arbutus and some other trees become crimson when they mature ; but the leaves even of these, if they dry up quickly, turn yellow, because the nutriment fails before maturity is reached. It seems very probable then that the 30 differences of colour in plants are due to the above causes.

The hairs, feathers, and hides, whether of horses, cattle, sheep, human beings, or any other class of animals, grow 3.5 white, grey, reddish, or black for the same reason. They $797^{\text {b }}$ are white when the moisture which contains their proper colouring is dried up in the course of maturation. They are black, on the other hand-as was the case in the other form of life ${ }^{1}$-when, during their growth, the moisture present in the skin settles and becomes stale owing to its 5 abundance, and so turns black; in all such cases skin and hide become black. They are grey, reddish, and yellow, and so on, when they have dried up before the moisture in them has completely turned black. Where the process has been irregular, their colours are correspondingly varic- 10 gated. So in all cases they correspond in colour to the hide and skin; for when men are reddish in colouring, their hair too is of a pale red; when they are black, it is black; and if white leprosy has broken out over some part of the body, the hair on that portion is also always white, like I_{5} the marking on dappled animals. Thus all hair and feathering follows the colour of the skin, both regional hair ${ }^{2}$ and hair which is spread ${ }^{3}$ over the whole body. So, too, with hoofs, claws, beaks, and horns ; in black animals they are black, in white animals they are white, and always 20 because the nutriment percolates through the skin to the outer surface. A number of facts prove that this is the true cause. For example, the hair of all very young children is reddish owing to scanty nutriment; that this is so is 35 clear from the fact that the hair of infants is always weak and thin and short at first ; but as they grow older, the hair turns black, when the nutriment which flows into it

[^7]
840.8

settles ${ }^{1}$ owing to its abundance. So, too, with the pubes 30 and beard ; when the hair is just beginning to grow on the pubic region and chin, it also is reddish at first, because the moisture in it, being scanty, quickly dries up, but as the nutriment is carried more and more to those regions the hair turns black. But the hair on the rest of the body 35 remains reddish for a considerable time owing to lack of nutriment ; for as long as it is growing, it keeps on turning $798^{\text {a }}$ black like the pubes and the hair of the head. This is clear from the fact that hairs which have any length are generally blacker near the body and yellower towards the ends, 5 because the moisture which reaches these parts of them is very scanty and soon dries up. This is the case with the hair of sheep and horses as well as with human hair; ${ }^{2}$ the feathers, too, of black birds are in all cases darker so near the body and lighter at the ends. The same is the case with the parts about the neck and, generally speaking, any part which receives scanty nutriment. This can be illustrated by the fact that before turning grey all hair changes colour and becomes reddish, because the nutriment ${ }^{15}$ again fails and dries up quickly ; finally it becomes white, because the nutriment in it is completely matured before the moisture turns black. This can be illustrated from the parts of beasts of burden which are under the yoke; here the hair always turns white, for in those parts because, 20 owing to the feebleness of the heat, they cannot draw up as much nourishment as the rest of the body, the moisture quickly dries up and turns white. So men tend especially to turn grey in the region of the temples, and generally speaking in any part which is weak and ailing. So, too, white is the colour to which more than any other a change tends to take place in instances of deviation from natural ${ }_{25}$ colour. For example, a hare has been known before now
${ }^{1} 797^{\text {b }}$ 29. Reading aủraîs for aủrois.
${ }^{2} 798^{\text {a }}$ 6. In Bekker's text the sentence кaì ai $\mu \hat{\nu} \nu . .$. тaरécos has no verb, and there is no substantive for ai to agree with. The text is clearly disturbed; one MS., for example, puts the whole sentence at the end of the previous chapter. The simplest alteration, which also makes
 with the previous sentence, and for the first half to read : kai ai $\mu \dot{\varepsilon} \nu \tau \hat{\omega} \nu$

to be white-while black hares have also been seen ${ }^{1}$-and similarly white deer and bears have sometimes occurred ; similarly white quails, partridges, and swallows. For all these creatures, when weak in their growth, come to maturity too soon owing to lack of nutriment, and so turn white. Similarly some infants at birth have white hair 30 and eyelashes and eyebrows, a circumstance which normally occurs when old age is coming on and is then clearly due to weakness and lack of nutriment. Therefore in most classes $798^{\text {b }}$ of animals the white specimens are weaker than the black; for, owing to lack of nutriment, they over-mature before their growth is complete, and so turn white, just as does fruit when it is unhealthy; for fruit is still more apt to get ${ }_{5}$ over-mature through weakness. But when animals grow white and at the same time are far superior to the rest of their species, as is the case with horses and dogs, ${ }^{2}$ the change from their natural colour to white is due to generous nutriment. For in such animals the moisture, not settling long, but being absorbed in the process of growth, does not 10 turn black. Such animals are soft and well covered with flesh, because they are well nourished, and white hairs, therefore, never change colour. This is clear from the fact that black hairs, when the nutriment in them fails and matures too completely, turn reddish before they grow grey, but finally turn white. Yet some people hold that hair always ${ }_{15}$ turns black because its nutriment is burnt up by heat, just as blood and all other substances turn black under these conditions; but they are in error, for individuals of some species of animals are black from birth-dogs, for example, and goats, and oxen, and, generally speaking, those creatures 20 whose skin and hair get nutriment from the very firstbut they are less black as they get older. If their supposition were correct this ought not to be the case, but it would necessarily follow that the hair of all animals would turn

[^8]black at their prime, when heat predominates in them, and that they would be more likely to be grey at first.
${ }_{25}$ For in the beginning the heat is always somewhat weaker than at the time when the hair begins to turn white. This is clear in the case of white animals also. Some of them are very white in colour at birth, those, namely, which at first have an abundance of nutriment, the moisture in which 30 has not been prematurely dried up; but as they grow older their hair turns yellow, because less nutriment afterwards flows into it. Others are yellow at first and are $799^{\text {a }}$ whitest at their prime. Similarly birds ${ }^{1}$ change colour when the nutriment in them fails. That this is the case can be seen in the fact that in all these animals ${ }^{2}$ it is the parts round the neck, and, generally speaking, any parts which are stinted when the nourishment is scanty, which turn 5 yellow ; for it is clear that, just as reddish colour turns black and vice versa, so white turns yellow and vice versa. This happens also in plants, some of which revert from a later stage in the process of maturation back again to an earlier stage. The best illustration of this 10 is to be found in the pomegranate. At first its seeds are crimson, as are also its leaves, owing to the small amount of nourishment which matures completely; afterwards they turn to a herb-green, because a quantity of nutriment flows into them and the process of maturation is less able to predominate than before; but in the end the nutriment does mature and the colour reverts to crimson.
${ }^{15}$ To sum the matter up, in hair and feathers of every kind, changes always occur either-as has already been remarked-when the nutriment in them fails, or when, on the contrary, it is too abundant. Therefore the age at which the hair is at its whitest or blackest varies in 20 different cases; for even ravens' feathers turn yellow $799^{\text {b }}$ in the end, when the nutriment in them fails. But hair is never crimson or violet or green or any other colour of that kind, because all such colours arise only by mixture with 5 the rays of the sun, and further because in all hairs which

[^9]contain moisture the changes take place beneath the skin， and so they admit of no admixture．This is clear from the fact that no feathers have their distinctive colouring io at first，but practically all gaily coloured birds start by being black－the peacock，for example，and the dove and the swallow；it is only later that they assume all their varied colours，the process of maturation taking place outside their bodies in their feathers and combs and wattles．${ }^{1}$ Thus in birds，as in plants，the maturation of the colours 15 takes place outside the body．So，too，the other forms of animal life－aquatic creatures，reptiles，and shell－fish－have all sorts and manners of colouring，because in them too the process of maturation is violent．

From what has been set forth in this treatise one may best understand the scientific theory of colours．
 Bekker＇s MSS．E and M read káגoıs，X kavגoís（quills）， P 入óфots． The Munich MS．collated by Prantl reads $\pi \tau \epsilon р \dot{\omega} \mu a \sigma \iota$ каi тoís 入í申oıs кai toís ka入є́ots，which is here adopted．The mention of λ ópou and кáлєa（for the form cf．Aelian，N．A．v．5，xi．25，xv．1）seems justified by $797^{\text {b }} 19$ ．

DE AUDIBILIBUS

BY
T. LOVEDAY and E. S. FORSTER

OXFORD
AT THE CLARENDON PRESS
1913

PREFACE

This tract appears to be a fragment of a larger work. It is certainly not Aristotle's, and has been ascribed with some likelihood to Strato. It has never been separately edited. Prantl's text in the Teubner edition (188r) has been used.

Mr. W. D. Ross's advice has again been invaluable to us.
T. L.
E. S. F.

DE AUDIBILIBUS

All sounds, whether articulate or inarticulate, arc $800^{\text {a }}$ produced by the meeting of bodies with other bodies or of the air with bodies, not because the air assumes certain shapes, as some people think, but because it is set in motion in the way in which, in other cases, bodies are moved, whether by contraction or expansion or compression, or again when it clashes together by an impact from the breath : or from the strings of musical instruments. For, when the nearest portion of it is struck by the breath which comes into contact with it, the air is at once driven forcibly on, thrusting forward in like manner the adjoining air, so that the sound travels unaltered in quality as far as the disturbance of the air manages to reach. For, though the 10 disturbance originates at a particular point, yet its force is dispersed over an extending area, like breezes which blow from rivers or from the land. Sounds which happen for any reason to have been stifled where they arise, are dim and misty ; but, if they are clear, they travel far and fill all 1_{5} the space around them.

We all breathe in the same air, but the breath and the sounds which we emit differ owing to structural variations of the organs at our disposal, through which the breath must travel in its passage from within-namely, the wind- 20 pipe, the lungs, and the mouth. Now the impact of the breath upon the air and the shapes assumed by the mouth make most difference to the voice. This is clearly the case ; for indeed all the differences in the kinds of sounds which are produced procced from this cause, and we find the same people imitating the neighing of horses, the croaking of 25 frogs, the song of the nightingale, the cries of cranes, and practically every other living creature, by means of the same breath and windpipe, merely by expelling the air
from the mouth in different ways. Many birds also imitate zo by these means the cries of other birds which they hear.

As to the lungs, when they are small and inexpansive and hard, they cannot admit the air nor expel it again in large quantities, nor is the impact of the breath strong and vigorous. For, because they are hard and inexpansive and 35 constricted, they do not admit of dilatation to any great extent, nor again can they force out the breath by contracting after wide distension; just as we ourselves cannot 800° produce any effect with bellows, when they have become hard and cannot easily be dilated and closed. For what gives strength to the impact of the breath is that the lungs 5 after wide distension contract and violently force out the air. This can be illustrated from the other parts of the body, none of which can strike a blow with any effect at a very close distance. It is impossible with either the leg or the hand to smite the object of your blow with any io force or to hurl it far, unless you allow the limb a considerable distance in which to strike the blow. If you fail to do so, the blow is hard owing to the energy exerted, but it cannot force its object far. Under similar circumstances stone-throwing engines cannot shoot far, nor a sling, nor ${ }_{15}$ a bow, if it is stiff and will not bend, and the string cannot be drawn back far. But if the lung is large and soft and flexible, it can admit the air and expel it again in large quantities, regulating it at will, thanks to its softness and the ease with which it can contract.
20 As for the windpipe, when it is long and narrow, it is only with difficulty that the voice is emitted, and considerable force is required owing to the distance that the breath has to travel. This is clear from the fact that creatures which have long necks force out their criesgeese, for example, and cranes and domestic fowls. A better illustration may be taken from the oboe; every one, for 25 instance, finds a difficulty in filling an oboe of the kind called the 'silkworm',' and considerable exertion is required owing to the amount of space to be filled. Further-

[^10]more, owing to narrowness of the passage, the breath is compressed within, and on escaping immediately expands and disperses, like streams when they pass through narrow 30 straits ; so that the voice is not sustained and does not carry far. Moreover, in such cases the breath must necessarily be hard to regulate and not easily controlled. On the other hand, when the windpipe is of considerable width, the breath can pass out easily, but, whilst travelling within, it becomes dispersed owing to the abundance of space, and 35 the voice becomes hollow and lacks solidity ; furthermore, creatures which have wide windpipes cannot articulate ${ }^{1} 80 r^{\text {a }}$ clearly with their breath because the windpipe does not hold firmly together. Creatures in whom the windpipe is irregular and has not the same width throughout must suffer from difficulties of every kind; for their breath must be under irregular control, and must be compressed 5 in one part and dispersed again in another part. If the windpipe is short, it necessitates a quick expulsion of the breath, and the impact on the air is more violent; in such cases the voice is more piercing owing to the quick passage of the breath.

Not only structural variations in the organs of speech ic make a difference to the voice, but also their condition. When the lungs and the windpipe are full of moisture, the breath is impeded and does not pass out continuously, because it is interrupted and becomes thick and moist and difficult to move, as happens in the case of a catarrh 1_{5} and in drunkenness. If the breath be absolutely dry, the voice becomes rather hard and dispersed; for moisture, when it is slight, holds the air together and causes, as it were, a unity in the voice. Such, then, are the differences in the voice caused by structural variations in the organs of speech and the varying condition of the organs.

Now though we localize sounds where they severally originate, yet in every case we actually hear them only when they strike upon the ear; for the air struck by the impact of the breath is borne along for a certain distance in a mass, and then gradually becomes dispersed, and we 25

[^11]hercby distinguish all sounds as near or distant. This can be illustrated by the fact that if a man takes a pot ${ }^{1}$ or a pipe or a trumpet and holds it up to another man's ear and speaks through it, all the sounds which he utters seem 30 quite close to the ear, because the air passing along the tube is not dispersed and the sound is kept uniform by the instrument which encloses it. Just as in a picture, if an artist represents two objects in colour, one as though it were at a distance and the other as though it were close at hand, the former object appears to us to be sunk into the 35 background of the picture and the latter to stand out in the foreground, though they are really in the same plane ; so, too, in the case of sounds, whether articulate or inarticulate, if one sound is already dissolved before it strikes the ear, whilst another still retains its continuity, though both reach the same spot, the former seems distant from 40 the ear and the latter quite near to it, because the one $80 \mathbf{r}^{\mathrm{b}}$ resembles a sound coming from afar, the other a sound ${ }^{2}$ close at hand.

Voices are distinct in proportion to the accuracy of the sounds uttered; for it is impossible for the voice to be distinct if the sounds are not perfectly articulated, just as the sealings of signet-rings cannot be distinct unless they 5 are accurately impressed. For this reason children cannot speak distinctly, nor drunken persons, nor old people, nor those who naturally lisp, nor, speaking generally, those whose tongues and mouths have any defect of movement. For as in instrumental music the sound produced by the io combination of brass instruments and horns is less distinct, so too, in the case of speech, great indistinctness is caused by the escape of breath from the mouth if the sounds are irregularly formed. They not only present themselves indistinctly, but they also impede the carefully articulated sounds, because the movement to which they give rise, 15 and which affects the ear, is irregular. Therefore, when we hear one person speaking, we understand better than when we hear a number of persons saying the same thing

[^12]at the same time. The same is the case with stringed instruments ; and we hear still less well when the oboe and lyre are played at the same time, because the sounds confuse one another. This is particularly evident when they are played in harmony, the result being that the two 20 sounds produced drown one another. The conditions under which sounds become distinct ${ }^{1}$ have now been stated.

Clearness in sound resembles clearness in colour. Those colours which most affect the eye are most clearly seen; in like manner we must suppose that those sounds are most 25 clearly heard which are most able to affect the hearing, when they strike upon it, in other words sounds which are distinct and solid and pure, and have most power of penetration ; for indeed it is a general law of sense-perceptions that the most distinct impressions are produced by the strongest, solidest, and purest stimuli. This is borne out 30 by the fact that all sounds finally become dim as the air which carries them becomes dispersed. The point can also be illustrated from the oboe; the sounds produced by oboes which have sloping reeds in their mouthpieces ${ }^{2}$ are softer, but not so clear; for the breath being forced down 35 passes immediately into a wide space and is not continuously and consistently sustained, but becomes dispersed. But when the reeds are closely constructed, ${ }^{3}$ the sound produced is harder and clearer, the more one presses them against the lips, because the breath is thus emitted with more violence. Such, then, are the conditions of clearness 40 in the voice. So voices which are called 'grey ' ${ }^{4}$ are $802^{\text {a }}$ generally considered no worse than those which are called 'white ${ }^{\prime} .5$ For voices which are rather harsh and slightly confused and have not any very marked clearness are the fitting accompaniment of outbreaks of passion and of advancing years, and at the same time, owing to their intensity, 5

[^13]they are less under control ; for what is produced by violent exertion is not casily regulated, for it is difficult to increase or decrease the strength of the sound at will.

In the case of oboes and other instruments of the same class, the sounds produced are clear when the breath emitted 10 from them is concentrated and intense. For the impacts on the external air must be of this kind, and it is in this way that they will best travel to the ear in a solid mass. Similarly, in the case of odours and light and the various forms of heat, the weaker they are, the less definite is the impression which they convey to the sense-perception, just 1_{5} as juices are weaker when mixed with water or with other juices. Any second ingredient which makes itself felt obscures the power of the original object.

In contrast to all other musical instruments the notes produced by horns, if they strike the air in a solid and continuous mass, are indistinct. Therefore the horn which 20 you choose ought to be one the nature of whose growth is regular and smooth, and which does not shoot up quickly. For such horns as shoot up quickly must necessarily be too soft and spongy, so that the notes are dispersed and do not pass out in a solid mass, nor do they produce a consistent sound owing to the softness of the horn and the sponginess ${ }_{25}$ caused by the pores. On the other hand, the horn must not be of too slowly growing a kind, nor must it be of a thick, hard consistency and lacking in resonance; ${ }^{1}$ for, if the sound in its passage strikes against anything, it is arrested at that point and ceases to advance on its outward course, so that the notes which proceed from such horns 30 are dull and irregular. That the direction taken by sound follows a straight line is clear from the way in which carpenters test beams and large timber in general. For when they strike one end, the sound passes along continuously to the other end unless the wood has some flaw in it; if it has a flaw, the sound travels along up to that 35 point and there ceases and is dispersed. It passes round the knots in the wood and cannot continue in a straight course through them. The point can also be illustrated from what

[^14]happens in bronze-working when they are filing down the loosely hanging folds of drapery or the wings of statues; the cracks close up, so that the metal gives out a rasping sound and causes a considerable noise; but the sound to immediately ceases if you tie a band round the folds ; for the vibration continues till it strikes the soft material and is there checked.

The baking of horns contributes greatly to the excellence $802^{\text {b }}$ of their tone ; for, when they are well baked, they produce a sound very like that of pottery, owing to the hardness caused by the heat; whilst, if they are not sufficiently baked, the sound which they make is too gentle owing to the softness of the horn, and they cannot produce such ${ }_{5}$ well-defined notes. Men, therefore, choose the ages of their horns ; the horns of old animals are dry and callous and porous, while those of young animals are quite soft and contain a considerable amount of moisture. As we have said, a horn should be dry, of uniform thickness, with io straight pores and a smooth surface ; for if it be so, the notes which pass through it will be full and smooth and even, and the impacts which they make upon the outer air will have the same qualities. For those strings too are best which are smoothest and most even all along, and show ${ }^{1}{ }_{15}$ the same workmanship throughout, and in which the joining of the gut is not visible; for then the impacts which they make upon the air are most even.

The reeds of oboes, too, must be solid and smooth and even, so that the breath may pass through smoothly and 20 evenly, without being dispersed. Therefore mouthpieces which have been well steeped and soaked in grease give a pleasant sound, while those which are dry produce less agreeable notes. For the air passes softly and evenly through a moist and smooth instrument. This is clear from the fact that the breath itself, when it contains some 2_{5} moisture, is less likely to strike against the mouthpiece and become dispersed; while dry breath is inclined to catch in the oboe, and the impact which it causes is too

[^15]hard owing to the force necessary to expel it. Differences, then, in sound arise from the above causes.
30 Hard voices are those which strike forcibly upon the hearing ; for which reason they are particularly unpleasing -those, that is to say, which are difficult to start, but which when once started travel with added force-for any quickly yielding body which comes in the way fails to abide the impact and quickly springs aside. To take an illustration of this ; heavy missiles travel along with force, 35 as do streams when they pass through narrow channels, for they acquire very considerable force in the actual straits, because they cannot yield to restraint all in a moment, but are driven violently along. The same thing happens in the case of articulate and inarticulate sounds. For clearly all forceful sounds are hard ; as, for instance, 4_{0} those caused by the forcible opening of boxes and turning of hinges, and those made by bronze and iron. For the $803^{\text {a }}$ sound made on the anvil is hard ${ }^{1}$ when the iron that is being forged is chilled and has become hard. So, too, is the noise from the file, when they are filing iron implements and making teeth in saws. The most violent claps of thunder, too, produce very hard sounds, and those showers 5 which from their violence we call 'tearing' showers.

It is quickness of breathing which makes the voice shrill, force which makes it hard. So it happens that the same individuals have not only sometimes a shriller and at other times a deeper voice, but also at times a harder and at times a softer voice. Yet some people hold that it is owing mo to the hardness of the windpipe that the voice becomes hard. In this they are wrong; for, though this may be quite a slight contributing cause, the real reason is the force of the impact caused by the breath from the lungs. For as some men's bodies are moist and soft, while those of others are hard and closely knit, so do their lungs show ${ }_{15}$ varicty. Therefore in some cases the breath which comes forth is soft, in others it is hard and violent ; for it is easy to see at a glance that the windpipe by itself exercises

[^16]but little influence. For no windpipe is of the hard consistency of an oboe ; yet for all that, by passing the breath through the former and through the latter, some people produce soft and others hard tones on the oboc. This is 20 clear from the direct perception ; for, if by using greater force one increases the strength of the breathing, the voice immediately becomes harder as a result of the force applied, even if it be naturally a somewhat soft voice. So, too, in the case of the trumpet ; when they are revelling, ${ }^{1}$ men ${ }_{25}$ relax the pressure of breath in the trumpet in order to make the sound as soft as possible. The point can also be illustrated from other classes of musical instruments ; ${ }^{2}$ as has been stated, the sounds produced by tightly stretched strings are hard, as are the notes of horns which have been well baked. If one touches the strings violently instead 30 of softly with the hand, they necessarily respond with more violent sounds. The notes produced by less tightly stretched strings and unbaked horns are softer, as are those produced by the longer musical instruments; for the impacts upon the air are both slower and softer owing to 3 . the distance that the sound has to travel, whereas in the shorter instruments they are harder owing to the tension of the strings. That this is so is shown by the fact that the sounds which the instrument itself gives forth are harder when one does not strike the string in the middle, because there is more strain upon the parts of the strings near 40 the crossbar and near the pegs. The notes produced by instruments made of fennel-wood are softer ; for the sounds striking on a soft matcrial do not rebound with such $803^{\text {b }}$ violence.

Voices are rough when the impact of all the breath upon the air is not single and simultaneous but divided and broken. For each portion of the air striking scparately upon the hearing-as if each were moved by a different 5 impact-the sense-impression is broken, so that one vocal utterance fails to produce any sound, while another strikes

[^17]
$645 \cdot 8$

D
with great violence upon the ear, and the contact with the hearing is not evenly sustained; just as when a rough object touches the skin. This can be best illustrated from 10 the file; for, when a file is being used, the air is set in motion simultancously at a number of separate minute. points, and so the sounds passing from these points to strike the ear scem rough, and especially so when the file is scraped against a hard substance. One may compare the sense of touch ; hard, rough objects produce stronger ${ }^{1}$ tactual im15 pressions. The matter can also be illustrated from the pouring of liquids, for the sound made by olive-oil is less noticeable than that made by any other liquid, owing to the unbroken continuity of the parts which compose it.

Voices are thin, when the breath that is emitted is small in quantity. Children's voices, therefore, are thin, and those 20 of women and cunuchs, and in like manner those of persons who are enfecbled by disease or over-cxertion or want of nourishment; for owing to their weakness they cannot expel the breath in large quantitics. The same thing may be seen in the case of stringed instruments; the sounds produced from thin strings are thin and narrow and 'fine 25 as hairs', because the impacts upon the air have only a narrow surface of origin. For the sounds that are produced and strike on the ear are of the same quality as the source of movement which gives rise to the impacts; for example, they are spongy or solid, soft or hard, thin or full. For one portion of the air striking upon another 3° portion of the air preserves the quality of the sound, as is the case also in respect of shrillness and depth; for the quick impulsions of the air caused by the impact, quickly succeeding one another, preserve the quality of the voice, as it was in its first origin. Now the impacts upon the air 35 from strings are many and are distinct from one another, but because, owing to the shortness of the intermittence, the ear cannot appreciate the intervals, the sound appears to us to be united and continuous. The same thing is the case with colours; for separate coloured objects appear 40 to join, when they are moved rapidly before our eyes. The

[^18]same thing happens, too, when two notes form a concord; for owing to the fact that the two notes overlap and include one another and cease at the same moment, the inter- $804^{\text {a }}$ mediate constituent sounds escape our notice. For in all concords more frequent impacts upon the air are caused by the shriller note, owing to the quickness of its movement ; the result is that the last note strikes upon our hearing simultaneously with an carlier sound produced by the 5 slower impact. Thus, because, as has been said, the ear cannot perceive all the constituent sounds, we seem to hear both notes together and continuously.

Thick sounds, on the contrary, are produced when the breath is emitted in great quantity and all together. There- io fore the voices of men are inclined to be thick, and the notes of the so-called 'perfect' obocs, especially when the latter are well filled with air. This is clear from the fact that if you compress the mouthpicce the sound tends to become shrill and thin, as also if one draws the 'speaker ' downwards; ${ }^{1}$ but if one stops up the exits, the volume of the sound becomes far greater owing to the amount of breath collected 15 in the instrument, like the notes produced from thicker strings. The sounds uttered by those whose voices are breaking and persons suffering from sore-throats, and after vomiting, are thick owing to the roughness of the windpipe and the fact that the voice does not escape, but striking upon it is pent up and acquires volume ; and above all, 20 owing to the moist condition of the body.

Piping voices are those which are thin and concentrated, such as those of grasshoppers and locusts and the nightingale's song, and, generally spuaking, crics which are thin, and are not followed by a second and different sound. For this piping quality does not depend on volume of sound 25
${ }^{1} 804^{\text {a }}$ I4. As this line is punctuated by the Teubner Text and by Bekker, no sense can be obtained. It should be punctuated as
 Here $\sigma \dot{v} \rho เ \gamma \gamma \epsilon s$ are apparently the same as $\gamma \lambda \omega \tau \tau a l$: A. A. Howard, op. cit., quotes Aristoxenus p. 28 and Plutarch, p. 1096^{2}, and suggests that the reference may be to a small hole covered with a sliding band and known as 'the speaker' in a modern clarinet. Gevaert, Histoire et Théorie de la Musique de l'Antiquitc', ii. 643 , takes the ri'pır\} to be a musical instrument which could be lengthened or shortened. The whole subject is very obscure.
nor on the tones being without tension and deep, nor yet upon the close sequence of the sounds, but rather upon shrillness and thinness and accuracy. Therefore it is the instruments which are lightly constructed and tightly stretched, and those which have no horn-work about them, 30 that produce piping notes. The sound of running water, and generally speaking, any sound which, whatever its cause, keeps up an unbroken continuity, preserve the accuracy of their tone.

Cracked voices which suddenly give way are those which travel along in a solid mass for a certain distance and then become dispersed. The best illustration may be taken from an earthenware vessel ; every such vessel when broken 35 as the result of a blow gives forth a cracked sound, for the course of the sound is broken at the point at which the blow was struck, so that the sounds which it gives forth no longer form a solid mass. The same thing happens in the case of broken horns and badly strung strings ; in all such cases the sound travels in a solid mass up to a certain point and 804^{b} is then dispersed, wherever the medium which supports it is not continuous, so that the impact upon the air is not single but dispersed, and the sound produced seems cracked. Cracked voices closely resemble harsh voices, except that 5 in the latter case the sounds are themselves dispersed into small portions, while cracked voices, for the most part, form a solid mass at first and afterwards become split up into a number of parts.

Aspirated sounds are formed when we emit the breath from within immediately together with the sounds; smooth io sounds, on the contrary, are those which are formed without the emission of the breath.

Voices become broken when they have no longer strength enough to expel the air with an impact, but the region about the lungs collapses after distension. For just as the legs ${ }^{1}$ and shoulders eventually collapse when they are in ${ }_{5} 5$ a strained position, ${ }^{2}$ so too the region about the lungs. The breath, when it does come forth, comes forth lightly,

[^19]because the impact which it produces is not forcible enough ; at the same time, owing to the fact that the windpipe has become exceedingly rough, the breath cannot pass out in a solid mass, but is dispersed, and so ${ }^{1}$ the sounds which it produces are broken. Some people hold that it is owing zo to the adhesive condition of the lungs that the breath cannot pass out and abroad; but they are wrong, for what really happens is that they make a sound but cannot speak out, because the impact upon the air does not take place with sufficient energy, but they only make a sound such 25 as the breath would make when forced merely from the throat.

When people stammer, it is duc not to an affection of the veins or windpipe, but to the movement of the tongue; for they find a difficulty in changing the position of the tongue when they have to utter a second sound. They therefore keep on repeating the same word, for they cannot so utter the next word; but the movements of articulation continue and the lungs go on working with an impetus in the same direction as before, owing to the quantity and force of the breath. For just as when one is running fast it is difficult to divert the whole body from its impetus in one direction to some other movement, so likewise is it with the individual parts of the body. So people who 3_{5} stammer are often unable to say the next word, but can easily say the next but one, when they make a fresh start. This explanation of stammering is supported by the fact that people often stammer when angry, because then they force out their breath.

[^20]
PHYSIOGNOMONICA

BY
T. LOVEDAY and E. S. FORSTER

OXFORD
AT THE CLARENDON PRESS
1913

PREFACE

This work, as we have it, is evidently a compilation of two treatises, the second beginning with Chapter IV. Neither is Aristotle's: both may be Peripatetic. Prantl's lext (Teubner, 188I) has been used, but a great many emendations have been taken from Förster's text and notes in his Scriptores Physiognomonici (I893), vol. i. On Förster's excellent work we have chiefly relied; J. B. Porta's De humana physiognomonia (1650) has also proved very uscful. We have, as before, to thank Mr. W. D. Ross for his kind advice and suggestions.

After some hesitation we decided to use the less clumsy forms 'Physiognomy', 'physiognomic', in place of the more accurate 'Physiognomony ', 'physiognomonic'.

T. L.
E. S. F.

CONTENTS

CHII.
I. Methods.
2. Sources of signs.
3. Signs of different characters.
4. Body and soul. Method again.
5. Typical animals.
6. Inferences, chiefly from animals.

PHYSIOGNOMONICA

I Mental character is not independent of and unatfected $805^{\text {a }}$ by bodily processes, but is conditioned by the state of the body; and contrariwise the body is sympathetically influenced by affections of the soul. ${ }^{1}$ The former of these propositions is well exemplified by drunkenness and sickness, where altered bodily conditions produce obvious: mental modifications, and the second by the emotions of love and fear, and by states of pleasure and pain. ${ }^{2}$ But still better instances of the fundamental connexion of body and soul and their very extensive interaction may be found 10 in the normal products of nature. ${ }^{3}$ There never was an animal with the form of one kind and the mental character of another : the soul and body appropriate to the same kind always go together, and this shows that a specific body involves a specific mental character. Moreover, experts 15 on the lower animals are always able to judge of character by bodily form : it is thus that a horseman chooses his horse or a sportsman his dogs. Now, supposing all this to be true (and it always is truc), physiognomy must be practicable.

Three methods have been essatyed in the past, each having had its special adherents.
I. The first method took as the basis for physiognomic inferences the various genera of animals, positing for each genus a peculiar animal form, and consequently upon this a peculiar mental character, and then assuming that if a man resembles such and such a genus in form he will resemble it also in soul. ${ }^{4}$

1. $805^{\text {a }}$ 2, 3. Read $\kappa \omega \nu \dot{j} \sigma \epsilon \omega \nu$, тоиิто $\delta \bar{\eta} \lambda o \nu$ (as in Stobaeus, Anthol. i. $47^{\text {b }}$).
${ }^{2} 805^{\circ}$ 7. Place $\tau \epsilon$ after $\lambda \cup ́ \pi a s$, as Förster suggests.
${ }^{3} 805^{a}$. i.e. in animals.

2. Those who adopted the second method proceeded in the same way, except that they did not draw their infer${ }_{25}$ ences from all kinds of animals but confined themselves to human beings : they distinguished various races of men (c. g. Egyptian, Thracian, Scythian) by differences of appearance and of character, and drew their signs of character from these races just as others did from animal genera.
3. The third method took as its basis the characteristic facial expressions which are observed to accompany different conditions of mind, such as anger, fear, erotic 30 excitement, and all the other passions.

All these methods are possible, and others as well : the $805^{\text {b }}$ selection of signs may be made in diverse ways. The lastmentioned method by itself, however, is defective in more than one respect. For one thing, the same facial expression may belong to different characters : the brave and the impudent, for example, look alike, though their characters are far asunder. Besides, a man may at times wear an 5 expression which is not normally his : for instance, a morose person will now and again spend an enjoyable day and assume a cheerful countenance, whilst a naturally cheerful man, if he be distressed, will change his expression accordingly. And, thirdly, the number of inferences that can be drawn from facial expression alone is small.
10 As to arguments from beasts, the selection of signs is made on wrong principles. Suppose you have passed in revicw one by one the forms of all the different kinds of animals, you still have no right to assert that a man who resembles a given kind in body will resemble it in soul also. In the first place, speaking broadly, you will never ${ }_{15}$ find this complete likeness, but only a resemblance. ${ }^{1}$ Moreover, very few signs are peculiar to individual genera; most of them are common to more than one kind, and of what use is resemblance in a common attribute? A man will resemble a lion, let us say, neither more nor less than a decr. (For we have a right to suppose that common 20 signs indicate common mental characters and peculiar

[^21]signs peculiar characters). Thus the physiognomist will not get any clear evidence from common signs. ${ }^{1}$ But is he any better off if he takes every genus by itself and selects signs that are peculiar to each ? Surely not, for he cannot tell what they are signs of. They ought to be signs of peculiar characteristics, but we have no right to assume that there are any mental characteristics peculiar to the different kinds of animals that we examine in physiognomy. Courage is not confined to the lion, but is found in many 25 other creatures; nor timidity to the hare, but it shares this quality with numberless other creatures. Thus it is equally fruitless to select the common and the peculiar features, and we must abandon the attempt to proceed by an examination of every kind of animal singly. Rather, we ought to select our signs from all animals that have some 3° mental affection in common. ${ }^{2}$ For instance, when investigating the external marks of courage, we ought to collect all brave animals, and then to inquire what sort of affections are natural to all of them but absent in all other animals. For if we were to select this or that as the signs of courage $806^{\text {a }}$ in the animals chosen in such a way as not to exclude the possibility of the presence in all these animals of some other mental affection, ${ }^{3}$ we should not be able to tell whether our selected marks were really signs of courage or of this other character. Two conditions must be fulfilled, therefore:-the animals from which we choose our ${ }^{\text {a }}$ signs must be as numerous as possible, and they must not have any mental affection in common except that one of which we are investigating the signs.

Permanent bodily signs will indicate permanent mental qualities, but what about those that come and go ? How can they be true signs if the mental character does not also come and go ? ${ }^{4}$ No doubt if you took a transitory io

[^22]sign to be permanent, it might be true once in a way, but still it would be worthless because it would not be a constant concomitant of a particular state of soul. ${ }^{1}$

Then again there are affections of soul whose occurrence produces no change in the bodily marks on which the 1: physiognomist relies, and they will not provide his art with recognizable signs. ${ }^{2}$ Thus as regards opinions or scientific knowledge, you cannot recognize a doctor or a musician, for the fact of having acquired a piece of knowledge will not have produced any alteration in the bodily signs on which physiognomy relies.

We must now determine the special province of physio- 2 20 gnomy (for the range of its application is limited), and the sources from which its various kinds of data are drawn, and then we may proceed to a detailed exposition of the more convincing among its conclusions.

Physiognomy has for its province, as the name implies, all natural affections of mental content, and also such 2_{5} acquired affections as on their occurrence modify the external signs which physiognomists interpret. ${ }^{3}$ I will explain later what kinds of acquired characters are meant, but now I will give a list-a complete list-of the sources from which physiognomic signs are drawn. They are these: movements, gestures of the body, colour, charac30 teristic facial expression, the growth of the hair, the smoothness of the skin, the voice, condition of the flesh, the parts of the body, and the build of the body as a whole. Such is the list that physiognomists always give of the sources in which they find their signs. Had this list been obscure 3s or insignificant, ${ }^{4}$ there would have been no use in my going any further; but, as things are, it may be worth while $806^{\text {b }}$ to give a more detailed description of the more convincing ${ }^{5}$ of the inferences that they draw from their material, and

${ }^{2} 806^{2}{ }^{1} 5$. Or, accepting F.'s suggested $\gamma \nu \omega \rho \iota \sigma \tau$ á, 'they will not be recognizable by his art.'
${ }^{3} 806^{\mathrm{a}} 25$. The text seems to be corrupt. The error may lie in

to state ${ }^{1}$ what their various signs are and where they are supposed to be found, so far as I have not already done so.

A brilliant complexion indicates a hot sanguine temper, whilst a pale pink complexion signifies naturally good parts, when it occurs on a smooth skin.

Soft hair indicates cowardice, and coarse hair courage. This inference is based on observation of the whole animal kingdom. The most timid of animals are deer, hares, and sheep, and they have the softest coats; whilst the lion and wild-boar are bravest and have the coarsest coats. Precisely the same holds good of birds, for it is the rule that 10 birds with coarse plumage are brave and those with soft plumage timid, particular instances being the cock and the quail. And again, among the different races of mankind the same combination of qualities may be observed, the is inhabitants of the north being brave and coarse-haired, whilst southern peoples are cowardly and have soft hair. A thick growth of hair about the belly signifies loquacity, on the evidence of the whole tribe of birds, for the one is 20 a bodily and the other a mental property peculiar to birds. ${ }^{2}$

When the flesh is hard and constitutionally firm, it indicates dullness of sense; when smooth, it indicates naturally good parts combined with instability of character, except when smooth flesh goes with a strong frame and powerful extremities.

Lethargic movements are a sign of a soft character, rapid 25 movements of a fervid temper.

As to the voice, when deep and full it is a sign of courage: when high-pitched and languid, of cowardice.

Gesture and the varicties of facial expression are interpreted by their affinity to different emotions: if, for 30 instance, when disagreeably affected, a man takes on the look which normally characterizes an angry person, irascibility is signified. ${ }^{3}$

[^23]Males are bigger and stronger than females of the same kind, and their extremities are stronger and sleeker and firmer and capable of more perfect performance of all 3 functions. But inferences drawn from the parts of the body are less secure than those based on facial expression of character ${ }^{1}$ and movements and gesture. In general it $807^{\text {a }}$ is silly to rely on a single sign : you will have more reason for confidence in your conclusions when you find several signs all pointing one way.

Here I may mention a possible method of physiognomy which has never yet been tried. Suppose, e.g., that irasci5 bility and morose sulkiness ${ }^{2}$ necessarily involve an envious disposition, and that the physiognomist could, without any bodily signs of the last character, deduce its presence from the presence of the other characters, we should then have a method peculiarly appropriate to masters of philosophy, ro since it is, we suppose, the peculiar mark of philosophy, when certain premises are given, to know the necessary conclusion. ${ }^{3}$ But this method which considers the interrelations of mental affections and that which proceeds by empirical observation of animals sometimes arrive at contrary conclusions. ${ }^{4}$ Take the voice, for example. By the former method you might feel bound ${ }^{5}$ to connect a shrill voice with a fierce temper, because in vexation and anger 15 one's voice tends to become loud and shrill, whilst placid people speak in tones at once languid and deep. But as against this, if you observe beasts, you find that a deep voice gocs with courage and a shrill voice with timidity, as witness on the one hand the roar of lion and bull, the hound's bay, and the deep-noted crow of high-spirited cocks, 20 and on the other, the high-pitched tones of deer and hares.

[^24]Yet perhaps even in these cases it is better not to connect courage and cowardice with the pitch of the voice, but rather with its intensity, so that ${ }^{1}$ it is strength of voice that marks the brave and a languid and feeble voice the coward. It is safest, however, to refrain from all positive assertion when you find that your signs are inconsistent and contrary to one another in detail, unless they belong to classes, some of which you have determined to be more trustworthy than others. Above all it is best to base your arguments upon assertions about species and not about entire genera, for the species more nearly resembles the individual, and it is with individuals that physiognomy is concerned; for in physiognomy we try to infer from bodily signs the character of this or that particular person, and not the characters of the whole human race.

3 Signs of Courage are-coarsc hair ; an upright carriage of the body ; size and strength of bones, sides and extremities ; the belly broad and flat ; shoulder-blades broad and set well apart, neither too closely nor too lonsely knit; 3 . a sturdy neck, not very fleshy ; a chest well covered with flesh and broad ; flat hips ; the thickness of the calf low $807^{\text {b }}$ down the leg; ${ }^{2}$ gleaming eyes, neither wide and staring nor yet mere slits, and not glistening ; the body of a brilliant hue ; ${ }^{3}$ a forchead straight and lean, not large, and neither quite smooth nor yet a mass of wrinkles. Signs of Cowardice are-a small growth of soft hair ; the figure 5 stooping ${ }^{4}$ and lacking in quickness; the thickness of the calf high up the leg ; a sallow complexion ; weak blinking eyes; weak extremitics; little legs, and hands long and delicate; loins small and weak; a rigid gesture of the io body; ${ }^{5}$ with undecided, deprecating, scared movements, and a shifty downcast look.

Good natural parts are indicated by rather moist and

[^25]tender flesh, not exactly firm nor yet extremely fat ; by leanness of the shoulders, neck, face, and neighbouring ${ }_{15}$ regions; by shoulder-blades closely knit and the parts below slack; ${ }^{1}$ by supple sides; a somewhat gaunt back; a clear pinkish hue over the body; a thin skin ; a small growth of hair, neither very coarse nor very black; and 20 moist, gleaming eyes. Dullness of sense is indicated when the back of the neck and the legs are fleshy and stiffly fitted and knitted; the hip-joint round; the shoulderblades high-set ; the forchead big, round, and fleshy ; the eyes pale and vacant ; the legs thick and fleshy and round ${ }_{25}$ at the ankles; the jaws big and fleshy; loins fleshy; legs long; neck thick-set ; the face fleshy and rather long. The manner of movement, gesture, and facial expression of the dull man, you may take it, ${ }^{2}$ are analogous to his character.

Impudence is signified by small, bright, wide-open eyes, with heavy blood-shot lids slightly bulging ; ${ }^{3}$ high shoulder30 blades; a carriage of the body not erect, but crouched slightly forwards; quickness of movement; a reddish hue over the body ; with a sanguine complexion, a round face, and high chest. Signs of Good Moral Character are35 a slow gait; a slow way of speaking with a breath-like and weak ${ }^{4}$ voice ; small eycs, black but not lustrous, not open and staring, nor yet mere slits ; with a slow, blinking 808^{a} movement of the lids-for rapid blinking signifies either cowardice or a hot temperament.

Good Spirits are indicated by a good-sized forehead, fleshy and smooth ; the region of the eyes rather low; a rather s drowsy-looking countenance, neither keen nor reflective. The gait, we may suppose, will be slow and languid, the gesture and facial expression those of a good but not a quick man. Signs of Low Spirits are-lean and wrinkled brows; enfeebled eyes (but you should notice that weak

[^26]eyes may signify softness and effeminacy as well as dejection ro and low spirits) ; ${ }^{1}$ a meek bearing and weary gait.

The Pathic is weak-eyed and knock-kneed; his head hangs on his right shoulder; his hands are carried upturned and flabbily; and as he walks he either wags his loins or ${ }_{15}$ else holds them rigid by an effort; and he casts a furtive gaze around, for all the world like Dionysius the Sophist.

Sulkiness is indicated by a snarling grin ; a black complexion and withered skin ; a gaunt, wrinkled face and the neighbouring regions furrowed with lines ; and by straight black hair.

Men of Fierce Temper bear themselves erect, are broad zo about the ribs and move with an easy gait; their bodies are of a reddish hue, ${ }^{2}$ their shoulder-blades set well apart, large and broad; their extremities large and powerful; they are smooth about the chest and groin ; they have great beards, and the hair of the head starts low down with a vigorous growth.

Those of a Gentle disposition are robust-looking, well covered with plenty of moist flesh; well-sized men and 25 well-proportioned; carrying themselves with head thrown back; and their hair starts rather higher $u p$ on the head than is usual.

The Sly man is fat about the face, with wrinkles round his eyes, and he wears a drowsy expression.

The Small-Minded have small limbs and small, delicate, 30 lean bodies, small eyes and small faces, just like a Corinthian or Leucadian.

Men addicted to Gaming and Dancing have short arms, like weasels.

Railers have the upper lip updrawn, and the lower projecting, ${ }^{3}$ and their hue is reddish.

The Compassionate are delicate, pale, and lustrous-cyed: the top of their nostrils is furrowed with lines, and they in_{5} are always weeping. Such men are fond of women and beget

[^27]female children, and in character they are crotic and mindful of the past, with good natural parts and a fervid temper. The signs of these qualities have already been mentioned.
$808^{\text {b }}$ Compassion goes with wisdom, with cowardice, and with good moral character, hardness of heart with stupidity and effrontery.

Gluttony is indicated when the distance from navel to chest is greater than that from chest to neck.
5. Lasciviousness is indicated by a pale complexion, a heavy growth of straight, thick, black hair over the body, a heavy growth of straight hair on the temples, and small, lustrous, lewd eyes.

In the Somnolent the upper parts are disproportionately large : such men are bulky ${ }^{1}$ and hot, and their flesh is firm.
Lequacity ${ }^{2}$ is indicated by disproportionate size of the upper parts, with a round delicatc build, and a thick growth of hair about the belly.

A Good Memory is signified when the upper parts are disproportionately small, and are delicate and tolerably 10 well covered with flesh.

Soul and body, as it seems to me, are affected sym- 4 pathetically by one another : on the one hand, an alteration of the state of the soul produces an alteration in the form of the body, and contrariwise an alteration in bodily form ${ }^{5} 5$ produces an alteration in the state of soul. Grief and joy, to take an instance, are states of the soul, and every one knows that grief involves a gloomy and joy a checrful countenance. Now if it were the case that the external cxpression persisted after the soul had got rid of these emotions, ${ }^{3}$ we might still say that soul and body are in sympathy, but their sympathetic changes would not be 20 entirely concomitant. As a matter of fact, however, it is ubvious that every modification of the one involves a

[^28]modification of the other. The best instance of this is to be found ${ }^{1}$ in manic insanity. Mania, it is generally allowed, is a condition of the soul, yet doctors cure it partly by administering purgative drugs to the body, partly by prescribing, besides these, certain courses of diet. Thus the result of proper treatment of the body is that they succeed, and that too simultancously, not only in altering the physical condition, but als) in curing the soul of manial ; 25 and the fact that the changes are simultancous proves that the sympathetic modifications of body and soul are thoroughly concomitant.

It is equally indisputable that differences in the soul's capacities are represented by corresponding physical traits, so that all the resemblances ${ }^{2}$ in animals are indicative of some identity.

Again, if we consider the behaviour of animals, we find 30 that some affections of the soul are peculiar to particular genera, whilst others are common to several, and that the peculiar activities are accompanied by peculiar, the common by common, physical traits. Examples of common is characters are insolence, which is found in all animals with bushy tails, and violent sexual excitability, ${ }^{3}$ which is found alike in asses and in dogs : ${ }^{4}$ whilst on the other hand railing is a character peculiar to dogs, and insensibility to pain is peculiar to the ass. I have already explained how $809^{\text {a }}$ common and peculiar characters are to be distinguished.

At the same time it is only by long and wide experience that one can hope for oneself to attain detailed and expert understanding of these matters. For not only are visible characteristics of the body to be referred for explanation, as we are told, to analogics drawn partly from animals, 5 partly from modes of action, but there are other external traits which depend on the varying proportions of bodily
${ }_{2}^{1} 808^{b} 21$. Read $\langle\dot{a} \nu\rangle$ ү́́vouto. .F.
 263) takes this to mean that 'alle Erscheinungen am lebendigen Wesen nur die Erscheinungsformen eines und desselben Princips seien' and speaks of 'organische Einheit', but it probably means merely that Wherever you find similarity of external traits, you can reckon on some

- $808^{\text {b }} 36$. Read $\kappa v \nu \omega \nu^{\prime}$ for $\sigma v \omega \nu$, as F'. suggests.
heat and cold ; and to add to the difficulty, some of these traits are very much alike and have not got distinctive names, as is the case e.g. with the paleness that results 10 from terror and the paleness ${ }^{1}$ due to fatigue. Now when the difference is so slight, it can hardly be discerned except by those whom practice has taught to appreciate the congruity of different shades of expression with different conditions of mind, and so the argument from congruity 15 leads to the quickest and soundest conclusions, ${ }^{2}$ and enables us to distinguish minute differences. It is a method generally useful, and particularly in the selection of physiognomic signs, for the signs selected must be congruous with what they stand for. ${ }^{3}$
so Deduction also should be used in the selection of signs, whenever possible. ${ }^{4}$ In the deductive procedure we attach to our data known attributes of them. For instance, if we have it given that a man ${ }^{5}$ is an impudent blackguard and penurious, we can add that he will be a thicf and a miser, the one as a consequence of his effrontery, the other as 25 a consequence of his penuriousness. In all such cases we ought to include the deductive method in our procedure.

I will now first attempt to make a division of animals 5 by the marks in which they are bound to differ if they are respectively brave or timorous, upright, or dishonest. We have to divide the whole animal kingdom for this purpose into two physical types, male and female, and to show what mental attributes are congruous with each of these ${ }_{30}$ types. In all beasts that we try to breed ${ }^{6}$ the female is tamer and gentler in disposition than the male, less powerful, more easily reared and more manageable. One may conclude from this that the female has a less spirited temper, 35 and I think we find a parallel to this in ourselves, for when we are mastered by a fit of temper we become more obstinate ${ }^{7}$ and totally intractable; we grow headstrong and violent

[^29]and do whatever our temper impels us to do. Further, the female is, in my opinion, more mischievous than the male, and (though feebler) more reckless. Every one can 8o9' sce that this is so in women and in domesticated animals, and according to the unanimous evidence of herdsmen and hunters it is no less true of the beasts of the field. Moreover, it is beyond dispute that in every genus the head of the ${ }_{5}$ female is smaller than that of the mate, her visage narrower, her neck thinner, her chest weaker, her sides of smaller build, and that, whilst her hips and thighs are fuller, she inclines to be knock-kneed, the lower parts of her legs are less stout, and her feet more delicately made: in short, ic the build of her body is pleasing to the eye ${ }^{1}$ rather than imposing, and she is in eomparison feeble and tender, and of moister tissuc. The male is the opposite of all this ${ }^{2}$: his is the braver and more upright nature, whilst the female is the more timid and less upright.

This being so, the lion manifestly exhibits the male type 15 in its most perfect form. IIe has a good-sized mouth : his visage is square and not too bony, the upper jaw level with the lower and not protruding : his nose you would call, if anything, rather thick: his gleaming cyes are deep-sct, and neither absolutely round nor unduly long, and of 20 moderate size : ${ }^{3}$ his brow is of the right size, his forchead square and slightly hollowed from the centre, and over its lower part, towards the cycbrows and nose, there hangs a sort of cloud, and from the top of his forchead down to his nose there runs a ridge ${ }^{4}$ of hairs sloping outwards: his head is of moderate size : his neek of due length and broad in proportion, with a tawny mane upon it, which is neither stiff and bristly nor yet too closely curled. About the 25 clavicles he is supple and not too tightly articulated: his shoulders are stalwart, his chest powerful, his trunk broad, with sides and back to match : there is no superfluity of flesh on his haunches or thighs: his legs are powerful and 30

[^30]sinewy, his gait vignous, his whole frame well-knit and sinewy and neither too stiff nor too soft: he moves slowly with a large stride, rolling his shoulders as he goes. Such is his bodily appearance, and in soul he is generous and 35 liberal, ${ }^{1}$ proud and ambitious, yet gentle and just and affectionate to his comrades.

The panther, on the other hand, of all animals accounted brave, approximates more closely to the feminine type, save in its legs, which it uses to perform any feat of strength. ${ }^{2}$
810^{a} For its face is small, its mouth large, its eyes small and white, sct in a hollow, but rather flat in themselves: its forchead is too long and tends to be curved rather than flat near the ears: its neck too long and thin: its chest narrow \therefore and its back long : haunches and thighs fleshy: flanks and abdomen rather flat: its colour blotchy: and its whole body ill-articulated and ill-proportioned. Such is its bodily aspect, and in soul it is mean and thievish, and in a word, a beast of low cunning.

I have now described the more notable examples of the 10 male and the female types of body to be found among animals accounted brave, and the characterization of the remainder will present no difficulty. I will next proceed to explain in a chapter on selection of signs what marks derived from animals the student of physiognomics should take into consideration.

The accepted doctrines of the semeintics of human 6 character are as follows :
15. A large and shapely foot, well-articulated and sinewy, is held to signify a strong character. For evidence we are referred to the male sex in general. A small, narrow; illarticulated foot, pretty but weak, signifies a soft character, 20 as in the female sex. Curved toes are a sign of impudence, and so are curved nails, on the evidence of birds with curved claws, whilst toes that are not properly divided indicate timidity, as in web-footed water-birds. ${ }^{3}$

[^31]Ankles sinewy and well-articulated mark a strong ${ }_{2} 5$ character, on the evidence of the male sex ; fleshy and illarticulated ankles, a soft character, on the evidence of the female sex.

When the lower leg is at nece well-articulated and sinewy and stalwart, it signifies a strong character, as in the male 30 sex: when it is thin and sinewy it signifies loquacity, ${ }^{1}$ as in birds. When it is full and almost bursting, it signifies by congruity blatant effrontery.

Knock-knees are a sign of the pathic, by congruity.
Thighs bony and sinewy indicate a strong character, as 3. in the male sex: but when bony and full, a soft character, as in females.

Buttocks pointed and bony are a mark of a strong $810^{\text {b }}$ character, as in males: fat fleshy buttocks of a soft character, as in females, whilst lean buttocks which look as if they had been rubbed bare, are indicative of a mischievous disposition, as in apes.

A narrow waist ${ }^{2}$ marks the hunter, as in the lion, ${ }^{3}$ and 5 you will find that the best hunting dogs also are narrow in the waist.

A loose build round about the belly indicates strength of character, as in the male sex, whilst the opposite is by congruity indicative of a soft character.

A well-sized and sturdy back marks strength, and a narrow io feeble back softness of character, as in males and females respectively.

Strong sides indicate strength and weak sides softness, as in males and females respectively, whilst swollen inflated r_{5} sides signify aimless loquacity, as in frogs. ${ }^{4}$ When the distance from navel to infra-sternal notch exceeds that from the notch to the neck, it is a mark of gluttony and of

[^32]${ }^{4} 810^{\text {b }}$ 16. Omit τ ois β ois $\hat{\eta} \dot{\epsilon} \pi i$ with F. as a variant on β arpcixous.
dullness of sense, of gluttony because there is so large 20 a receptacle of food, and of dull sense because the seat of the senses is correspondingly confined and compressed ${ }^{1}$ by the receptacle of food, so that the senses have become stupefied by repletion of the stomach rather than, as is usual, by inanition. ${ }^{2}$

A large well-articulated chest signifies strength of character, as in males.

When the upper part of the back is large and well covered with flesh and well-knit, the character is strong, as in males: when it is feeble and gaunt and ill-knit, the character is soft, as in females. When it is very much bent and the shoulders fall in upon the chest, it is argued by congruity 30 to signify a mischicvous disposition, since the front parts of the body, which ought to stand clear to view, become invisible. When it is curved backwards, it signifies vanity and lack of intelligence, as in the horse. So it must not be either convex or concave ; and something intermediate between these extremes, therefore, should be looked for as marking a man of good natural parts.
35 When the shoulders and the back of the neck are wellarticulated, they signify a strong character, whilst weak and ill-articulated shoulders signify a soft character, the $8 \mathbf{I I}^{\text {a }}$ reference being to the sexes, as I explained when speaking of feet and thighs. Supple shoulders signify liberality of soul, ${ }^{3}$ the argument being based on the external appearance, with which liberality seems to be congruous. On the other hand, stiff, clumsy shoulders indicate an illiberal dis5 position, also by congruity.

Suppleness of the clavicles signifies quickness of perception, for when the collar-bone is supple, stimulation of the senses is rendered easy. ${ }^{4}$ Contrarivise, a stiff collar-bone indicates dullness of sense, because then it is difficult to 10 apprehend sense-stimuli.

[^33]A thick neck indicates a strong character, as in males: a thin neck, weakness, as in females : a neck thick and full, fierce temper, as in bulls: ${ }^{1}$ a well-sized neck, not too thick, ${ }^{5}$ a proud soul, as in lions: a long, thin neck, cowardice, as in deer: an unduly short neck, a treacherous disposition, as in wolves.

Lips thin and pendulous at their points of junction, such that part ${ }^{2}$ of the upper lip overhangs the lower at the 20 corners, signify pride of soul. The reference generally given is to the lion, but you may see the same thing as well in large and powerful breecls of dogs. Lips thin and hard with a prominence about the cye-teeth are a sign of base breeding, ${ }^{3}$ on the evidence of swine. Thick lips, with 25 the upper overhanging the lower, mean folly, as in the ass and the ape. Projecting upper lip and gums mark the railer, on the evidence of dogs.

A nose broad ${ }^{4}$ at the tip means laziness, as witness cattle : but if thick from the tip, it means dullness of sense, as in 30 swine ; if the tip is pointed, irascibility, as in dogs ; whilst a round, blunt tip indicates pride, as in lions. Men with a nose thin at the tip have the characteristics of birds. When such a nose curves slightly right away from the fore- 3.5 head, it indicates impudence, as in ravens: but when it is strongly aquiline and demarcated from the forehead by a well-defined articulation, it indicates a proud soul, as in the eagle; and when it is hollow, with the part next the forehead rounded and the curve rising upwards, it signifies lasciviousness, as in cocks. ${ }^{5}$ A snub nose means lasciviousness, as in deer. Open nostrils are a sign of 81^{b} fierce temper, for they enter into the facial expression of temper.
${ }^{1} 8 \mathrm{II}^{\mathrm{a}}$ I4. Omit $\theta v \mu 0 \epsilon \iota \delta \in i$ is. F.
${ }^{2} 81 I^{n} 19$. Read $\ddot{\omega} \sigma \tau \epsilon \tau \iota$ for $\dot{\omega} s \epsilon \grave{\epsilon} \pi i . \quad$ F.
${ }^{3} 8 I^{a}{ }^{\text {a }} 23$. Read ajécveís. Bonitz.
${ }^{4} 8 \mathrm{H}^{\mathrm{a}} 28$. Read $\pi \lambda a \tau \epsilon i a v$.
${ }^{5} 811^{1}$ a 37 ff. Like Porta 'gallos consuluimus' ' cum eiusmodi nasum
 $\pi \epsilon \rho \iota \phi \epsilon \rho \bar{\eta}$. But this does not much improve the sense. Porta translates 'incavus nasus ante frontem, rotundus, et supereminens [i.e. the comb] rotundum', which, as his illustration shows, gives a sense not far from the actual appearance, if it couid be got from the text. Fither the text is corrupt, or the author had not kept poultry.

The face, when fleshy, indicates laziness, as in cattle: if gaunt, assiduity, and if bony, ${ }^{1}$ cowardice, on the analogy of asses and deer. A small face marks a small soul, as o in the cat and the ape: a large face means lethargy, as in asses and cattle. So the face must be neither large nor little: an intermediate size is therefore best. A meanlooking face signifies by congruity an illiberal spirit.

As to the eyes, when the lower lids are pendulous and rs baggy, you may know a bibulous fellow, for heavy drinking ${ }^{2}$ produces bagginess below the eyes: but when the upper lids are baggy and hang over the eyes, ${ }^{3}$ that signifies somnolence, for on first waking from slecp our upper lids hang heavily. Small eyes mean a small soul, by congruity 20 and on the evidence of the ape: large eyes, lethargy, as in cattle. In a man of good natural parts, therefore, the cyes will be neither large nor small. Hollow eyes mean villainy, as in the ape : protruding eyes, imbecility, by con5 gruity and as in the ass. The eyes, therefore, must neither recede nor protrude: an intermediate position is best. When the eyes are slightly deep-set, they signify a proud soul, as in lions: and when a little deeper still, ${ }^{4}$ gentleness, as in cattle.
30 A small forehead means stupidity, as in swinc : too large a forehcad, lethargy, as in cattle. A round forehead means dullness of sense, as in the ass : a somewhat long and flat forchead, quickness of sense, ${ }^{5}$ as in the dog. A square and well-proportioned forchead ${ }^{6}$ is a sign of a proud soul, 3.5 as in the lion. A cloudy brow signifies self-will, as in the lion and the bull : a taut brow is taken from observation to mark the flatterer, and you may notice how a dog's brow smooths out when he fawns upon you.? So, a cloudy 812 ${ }^{\text {a }}$ brow indicating self-will and a smooth brow obsequiousness,

[^34]the proper condition must be intermediate between these extremes. A scowling brow means a mornse disposition, for we observe that vexation is thus expressed : a downeast brow means querulousness, as may also be verified by: observation.

A large head means quickness and a small head dullness of sense, on the evidence of the dog and the ass respectively. A peaked head means impurlence, as in those birds whirh have curved claws.

Men with small ears have the disposition of monkeys, those with large ears the disposition of asses, and you may 10 notice that the best breeds of dogs have ears of moderate size.

Too black a hue marks the coward, as witness Egyptians and Ethiopians, ${ }^{1}$ and so docs also too white a complexion, as you may see from women. So the hue that makes for courage must be intermediate between these extremes. 15 A tawny colour indicates a bold spirit, as in lions : but too ruddy a hue marks a rogue, as in the case of the fox. A pale mottled hue signifies cowardice, for that is the colour one turns in terror. The honey-pale are cold, and coldness means immobility, and an immobile body means slowness. A red hue indicates hastiness, for all parts of the body on 20 being heated by movement turn red. A flaming skin, however, indicates mania, for it results from an overheated body, and extreme bodily heat is likely to mean mania. $\quad 25$

A fiery colour on the chest signifies irascibility, for it is part of the expression of the onset of anger. Swollen veins on the neck and temples also signify irascibility, being part of the expression of anger. A face that reddens easily 30 marks a bashful man, for blushing is an expression of bashfulness. But when the jowl goes red, you have a drunkard, for a red jowl is an expression of heavy drinking : whilst eyes that flush red indicate uncontrollable temper, 3. for in a wild outburst of temper the eyes flush red. If the eyes are too black, they signify cowardice, for we saw above 812 ${ }^{\text {b }}$ that this is the signification of too black a hue: if they are not too black, but inclining to chestmut, they indicate a bold

[^35]spirit. Grey or white cyes indicate cowardice, for we saw above that this is the signification of a white hue: but 5 if they are gleaming rather than grey, they mean a bold spirit, as in lions and eagles. Goatish ${ }^{\mathbf{1}}$ eyes mean lustfulness, as in goats: ficry cyes, impudence, as in dogs : eyes opale and mottled, cowardice, for in terror the eyes go pale with splotches of colour: glistening eyes, lasciviousness, on the analogy of the cock and the raven.

Hairy legs mean lasciviousness, as in goats. Too much ${ }^{5} 5$ hair on breast and belly means lack of persistence, as argued from birds, in which this bodily characteristic is most developed; but breasts too devoid of hair indicate impudence, as in women. So both extremes are bad, and an zo intermediate condition must be best. Hairy shoulders mean lack of persistence, on the analogy of birds : too much hair on the back, impudence, as in wild beasts. Hair on the nape of the neck indicates liberality, as in lions: hair on the point of the chin, ${ }^{2}$ a bold spirit, on the evidence 25 of dogs. Eyebrows that meet signify moroseness, by congruity : eyebrows that droop on the nasal ${ }^{3}$ and rise on the temporal side, silliness, as is seen in swine. When the hair of the head stands up stiff, it signifies cowardice, by 30 congruity, for fright, as well as cowardly disposition, makes the hair stand on end : and very woolly hair also signifies cowardice, as may be seen in Ethiopians. Thus extremely bristly and extremely woolly hair alike signify ${ }^{4}$ cowardice, and so hair gently curling at the end will make for boldness 3.5 of spirit, as is to be seen in lions. A ridge of hair ${ }^{5}$ on the upper part of the forchead indicates a liberal disposition, as in the lion: but a growth of hair on the forchead down by
${ }^{8} 3^{a}$ the nose ${ }^{6}$ indicates illiberality, the argument being from congruity, because such a growth presents a servile appearance.

[^36]A long and slow step indicates a mind slow to begin，but persistent when started，for the length of the stride shows determination，but its slowness procrastination．A short： slow step means tardincess without persistence，for shortness and slowness do not indicate determination．A long quick step means enterprise ${ }^{1}$ and persistence，for its speed indicates enterprise and its length determination．${ }^{2}$ A short quick step signifies enterprise without persistence．

Identical references are made about gesture of hand， 10 elbow，and arm．${ }^{3}$ To hold one＇s shoulders straight and stiff and roll them as one walks signifies a vainglorious spirit，${ }^{4}$ on the analogy of the horse ：but to roll ${ }^{5}$ the shoulders if one stoops a little forwards means a proud soul，as in the lion． To walk with feet and legs bent out means effeminacy，${ }^{6}{ }^{6} 5$ as being a characteristic of women．To keep turning and bending ${ }^{7}$ the body is a sign of obsequiousness，for that is the gesture of the flatterer．To walk with a stoop to the right is by congruity of appearance held to argue a pathic．

Mobile eyes signify keenness and rapacity，as in hawks： 20 blinking eyes，cowardice，for flight begins with the eyes． Sidelong leering glances are held to be characteristic of a fop，${ }^{8}$ and so are drooping movements of one lid half over a motionless eye，and an upward roll of the eyes under the upper lids ${ }^{9,10}$ with a tender gaze and drooping 25 eyelids，and in general all tender melting glances；we argue partly from congruity，partly from the fact that these looks are common in women．A slow movement of the cyes which allows a tinge of white to show all the time，so that they look stationary，${ }^{11}$ indicates a reflective character ；

[^37]3_{0} for when the mind is absorbed in reflection, our eyes also are motionless.

A big, deep voice indicates insolence, as in the ass: a voice which, starting low, rises to a high pitch, indicates despondency and querulousness, the argument being partly
35 from cattle and partly from congruity. Shrill, soft, broken $8 \mathbf{1 3}{ }^{\mathrm{b}}$ tones mark the speech of the pathic, for such a voice is found in women and is congruous with the pathic's nature. A deep, hollow, simple voice signifies a noble soul, ${ }^{1}$ as in the stronger breeds of dogs, and also by the argument from congruity. A soft, languid voice means gentleness, as in : sheep: a shrill, shrieking voice, lewdness, as in goats.

Men of abnormally small stature are hasty, for the flow of their blood having but a small area to cover, its movements are too rapidly propagated to the organ of intelligence. ${ }^{2}$ Men of abnormally large stature, on the other 10 hand, are slow, for the flow of the blood has to cover a large arca, and its movements are therefore propagated to the organ of intelligence slowly. Small men with dry tissues, or of the hue that heat produces in the body, have not persistence enough to effect their purposes; for their blood flowing in a confined space, and at the same time, in consequence of the fiery condition of the body, flowing ${ }_{15}$ rapidly, their thought never keeps to a single topic, but is always passing to something new before being done with the old. ${ }^{3}$ Again, big men with moist tissues or of the hue that results from cold, also lack persistence ; for their blood flowing over a large area, and slowly, on account of the cold condition of the body, its movement does not manage 20 to reach the organ of intelligence entire. ${ }^{4}$ On the other
 lacuna after $\pi \varepsilon \pi \lambda \epsilon \gamma \mu \epsilon \in \nu 0 \nu$. F. following Gesner.
${ }^{2} 813^{\mathrm{b}} 9$. Sc. the heart. F. refers to Empedocles in Theophr. De Sensu, § 10, as confirming the view that rò фpovoûv is the blood. But if $\tau \dot{o} \phi \rho o \nu o \hat{v} \nu$ is the blood, then ai кı讠, $\sigma \epsilon t s$ are not of the blood. Yet $\kappa \iota \nu \eta \sigma \epsilon \omega s$ in 1.22 must refer to the blood. Moreover, $\dot{\pi} \epsilon \rho \chi \omega \rho \circ \hat{v} \sigma \iota$ in 1. 33 becomes almost unintelligible, unless indeed a distinction is drawn between blood near the heart as the seat of intelligence and other blood as stimulating it. If, however, тò фpovoûv is the heart, ai кıvíбєts are movements of the blood occasioned by stimuli, or at any rate conveying stimulation to the heart. ${ }^{3} 813^{\mathrm{b}} 16$. Read tù $\pi \epsilon \rho \iota \dot{u} v . \mathrm{F}$.
 ij kiv $\eta \sigma t s$ before oi.)
hand, small men with moist tissues and of the hue that results from cold, ${ }^{1}$ do effect their purposes; for their blood moving in a confined area, the less mobile ${ }^{2}$ constituent in its composition produces a proportion ${ }^{3}$ which conduces to effectiveness. ${ }^{4}$ And again, big men with dry tissues, and of the hue that results from heat, ${ }^{5}$ are also persistent, and 25 are keen of sense ; for the warmth of tissue and complexion counteracts the excessive size, so that a proportion conducive to effectiveness is attained. Such, then, are the conditions under which opposite extremes of stature tend now to effective activity, and now to ineffectiveness. But зo a stature intermediate between these extremes confers upon its possessors the greatest acuity of sense and the greatest general effectiveness, for on the one hand, movements of the blood, not having a long distance to travel, casily reach the reason, while on the other hand, not being confined in too small a space, they do not pass beyond their mark. ${ }^{6}$ Thus the greatest tenacity of purpose and the greatest acuity of sense will be found in persons of moderate 35 stature.

An ill-proportioned body indicates a rogue, the argument $814^{\text {a }}$ being partly from congruity and partly from the female sex. But, ${ }^{7}$ if bad proportions mean villainy, a well-proportioned frame must be characteristic of upright men and brave: [only, the standard of the right proportions must be sought in the good training and good breeding of the body, and not in the male type, as determined at the begin- 5_{5} ning of this treatise]. ${ }^{8}$

It is advisable, in elucidating all the signs I have mentioned, to take into consideration both their congruity with

${ }^{2} 813^{\text {b }} 22$. sc. cold.
${ }^{3} 813^{b} 23$. sc. between size of body and speed of movement of blood, as in 1.26 ; not between constituents of the blood.

${ }^{7} 814^{\text {a }}$ I. Read δ é for fáp. Sylburg.

* $814^{a} 3^{-5}$. This passage is in complete contradiction to Chapter V and to the next paragraph. It must be regarded as an interpolation. It may be noted that only here in the P'lysiognomomin is apadépetw used with mpós.
various characters and the distinction of the sexes, which is, as I showed, the most complete distinction, the male being more upright and courageous and, in short, altogether better than the female. It will be found, moreover, in $\mathbf{8 1 4}{ }^{\text {b }}$ every selection of signs that some signs are better adapted than others to indicate the mental character behind them. The clearest indications are given by signs in certain particularly suitable parts of the body. The most suitable part of all is the region of the eyes and forehead, head and 5 face; next to it comes the region of the chest and shoulders, and next again, that of ${ }^{1}$ the legs and feet ; whilst the belly and neighbouring parts are of least scrvice to physiognomics. In a word, the clearest signs are derived from those parts in which intelligence is most manifest. ${ }^{2}$

[^38]
D E P L A N T I S

BY

E. S. FORSTER

OXFORD
 AT THE CLARENDON PRESS
 1913

PREFACE

The De Plantis is one of the least satisfactory of all the treatises which are included in the Aristotelian corpus.

Firstly, it was certainly not in its original form a work of Aristotle himself ; E. H. F. Meyer, ${ }^{1}$ who has devoted most time to the text and its elucidation, attributes it to Nicolaus Damascenus. Much of it undoubtedly shows Peripatetic influence, and it has therefore some interest as compensating for the scantiness of our information on botanical subjects in other Aristotelian treatises. The views expressed on sex in plants are of particular importance, as partly anticipating the results of modern botanical research.

Secondly, the text has passed through a chequered career and is in a deplorable condition. The original Greek text having been lost, the treatise was preserved in an Arabic translation, now also lost, which in its turn was translated into Latin during the thirteenth century by a certain Englishman, by name Alfredus, ${ }^{2}$ whose knowledge of Arabic and whose Latin style leave something to be desired. The Greek text in Bekker's edition and the Teubner edition is a translation from the Latin back into Greek, and is therefore three times removed from the original.

The present translation has been made from the Latin version of Alfredus as edited by Meyer, to whose commentary I am deeply indebted. F. W. Wimmer's Phytologiae Aristotelicae Fragmenta ${ }^{3}$ has also been found useful. It has been thought worth while to note parallels with

[^39]
PREFACE

other passages in Aristotle when it has been possible to trace them.

My sincere thanks are due to the kindness of Mr. W. D. Ross, who has read through the translation and made some valuable suggestions.
E. S. F.

CONTENTS

chap.
BOOK I

1. The nature of plant life.
2. Sex in plants.
3. The parts of plants.
4. Structure and classification of plants.
5. Composition and products of plants.
6. Methods of propagation and fertilization.
7. Changes and variations in plants.

BOOK II

1. Origins of plant life; 'concoction'.
2. Digression on 'concoction' in the earth and sea.
3. The material of plants; effects of outward conditions and climate.
4. Water plants.
5. Rock plants.
6. Other effects of locality on plants ; parasitism.
7. Production of fruit and leaves.

8,9. Colours and shapes of plants.
10. Fruits and their flavour.

DE PLANTIS

BOOK I

I Life is found in animals and plants ; but while in animals 815^{a} it is clearly manifest, in plants it is hidden and less cvident. But before we can assert the presence of life in plants, a long inquiry must be held ${ }^{1}$ as to whether plants possess a soul and a distinguishing capacity for desire and pleasure and pain. Now Anaxagoras and Empedocles ${ }^{2}$ say that 15 they are influenced by desire ; they also assert that they have sensation and sadness and pleasure. Anaxagoras declared that plants are animals and feel joy and sadness, deducing this from the bending ${ }^{3}$ of their foliage; while 20 Empedocles held the opinion that sex has a place in their composition. Plato indeed declares ${ }^{*}$ that they feel desire only on account of their compelling need of nutriment. If this be granted, it will follow that they also feel joy and sadness and have sensation. I should also like to reach some conclusion as to whether they are refreshed by sleep 2_{5} and wake up again, and also whether they breathe, and whether they have sex through the mingling of the sexes or not. But the great diversity of opinion on these subjects involves too long an inquiry, and the best course is to pass over these topics and not to waste time ${ }^{5}$ on the unprofitable investigation of details. Some have asserted that so plants have souls, because they have scen that they come to birth and receive nutriment and grow, and have the bloom of youth and the dissolution of old age-characteristics which nothing inanimate shares with plants; if
${ }^{1}$ Omitting constaret enim with the Basle MS.
${ }^{2}$ Reading here (and elsewhere) Empedocles for Abruculis; Meyer shows that the doctrines attributed in this treatise to Abrucalis are those ascribed by other writers to Empedocles.
${ }^{3}$ Meyer defends the MS. reading fexum against the usual reading fluxum.
${ }^{4}$ Timaeus 77 A-C.
"Reading morari for moncrari : the Greek version has évôtatpilsetr.

38 to be affected by desire.
$8 \mathrm{5} 5^{\text {b }}$ Let us first examine their obvious characteristics, and afterwards those which are less evident. Plato ${ }^{\mathbf{1}}$ says that whatsocver takes food desires food, and feels pleasure in satiety and pain when it is hungry, and that these dispositions do not occur without the accompaniment of ${ }_{5}{ }_{5}$ sensation. The view of Plato in thus holding that plants have sensation and desire was marvellous enough; but Anaxagoras and Democritus and Empedocles ${ }^{2}$ declared that they possessed intellect and intelligence. ${ }^{3}$ These views we must repudiate as unsound and pursuc a sane statement of the case. I assert, then, that plants have neither sensation 20 nor desirc ; ${ }^{4}$ for desire can only proceed from sensation, and the end proposed by our volition changes in accordance with sensation. In plants we do not find sensation nor any organ of sensation, nor any semblance of it, nor any definite form or capacity to pursue objects, nor movement 25 or means of approach to any object perceived, nor any token whereby we may judge that they possess senseperception corresponding to the tokens by which we know that they receive nutriment and grow. Of this we can only be certain because nutrition and growth are parts of the soul, and when we find a plant to be possessed of such 30 a nature, we perceive of necessity that some part of a soul is present in it; but we ought not to contend that a plant which lacks sensation is a thing possessed of sense, because while sensation is the cause of the glorification of life, nutrition is mercly the cause of growth in the living thing.

These differences of opinion come into consideration in their own proper place. It is certainly difficult to find a state intermediate between life and the absence of life.
$816^{\text {a }}$ Some, too, will urge that a plant, if it be alive, is therefore an animal ; ${ }^{5}$ for it is difficult to assign any principle to the

[^40]life of plants except that of the life of nutrition. But, when men deny that plants have life, they do so because plants do not possess sensation ; yet there are certain ${ }_{5}$ animals which lack foresight and intelligence. ${ }^{1}$ For nature, which destroys the life of the animal in death, preserves it in the continuation of the race, and it is wrong for us to suppose any intermediate state between the animate and the inanimatc. We know that sea-shells ${ }^{2}$ are animals to which lack foresight and intelligence and are at once plants and animals. The only reason, therefore, for their being called animals is that they have sensation; for genera give names and definitions to the species which fall under them, while the species give names to the individuals, and the genus ought to rest on a common cause present in the r_{5} numerous individuals and not on the individuals themselves; but the meaning of the cause, on which the genus is based, is not obvious to every one. Now there are animals ${ }^{3}$ which have no female sex, and some which do not procreate their kind, and some which lack the power of movement, and some in which the colour varies, and some 20 which produce an offspring unlike themselves, and some which are produced from decaying vegetation. ${ }^{4}$

What, therefore, is the principle of life in animals ? What is it that raises the noble animal, as surely as the heavens which encircle the sun and the planets, from the sphere of perplexity and doubt? For the heavenly bodics feel no outside influence, and sensation is an effect produced 2_{5} on a sentient being. Now a plant has no movement of itself, for it is fixed in the earth, which is itself immovable. Whence, then, shall we infer any similarity which may enable us to attribute life to the plant? For there is no

[^41]30 one thing which includes all three forms of life. ${ }^{1}$ We therefore assert that sensation is common to all animal life, because sensation marks the distinction between life and death; but the heavens, which pursuc a nobler and more sublime path than we do, are far removed from life and death. But it is fitting that animals should have ${ }^{2}$ some 35 common characteristic perfect in itself but less sublime, and this is the acquisition and deprivation of life. And one ought not to shrink from the use of these terms on the ground that there is no mean between the animate and the inanimate, between life and the deprivation of life; nay, there is a mean between life and the inanimate, because the inanimate is that which has no soul nor any portion of it. But a plant is not one of those things which entirely lack 40 a soul, because there is some portion of a soul in it; ${ }^{3}$ and 816^{b} it is not an animal, because there is no sensation in it, and plants pass one by one gradually from life into death. We can put the matter in a different way and say that a plant is animate. I cannot, however, assert that it is inanimate as long as it possesses soul and some form of 5 sensation; for that which receives food is not entirely without soul, and every animal has soul. But a plant is imperfect, and, whereas an animal has definite limbs, a plant is indefinite in form, and a plant derives its own particular nature from the motion which it possesses in itself. ${ }^{4}$ Some one might say that a plant has soul, because ro the soul is that which causes motion and desire to arise locally, and motion can only arise locally when sensation is present. But the absorption of food is in accordance with a natural principle, and is common both to animals and plants, and no sensation at all will accompany the absorption of food; for everything that ${ }^{15}$ absorbs food employs two qualities in feeding, namely, heat and cold, and an animal properly requires moist food

[^42]and dry food, for coldness is always found in dry food; for neither of these two natures ${ }^{1}$ is ever unaccompanied by the other. And so food is continuously being supplied zo to that which feeds on it till the time when it begins to decay, and animals and plants have to be provided with food composed of the same elements as those of which they themselves are composed.

2 Let us now investigate what we have already mentioned, namely, desire in plants, their movement, and their soul, and that which is given forth ${ }^{2}$ by them. A plant has not ${ }_{25}$ respiration, although Anaxagoras declared that it has; ${ }^{3}$ and we even find many animals which have not respiration. ${ }^{4}$ We can sce by ocular demonstration that plants do not slecp and wake, for waking is due to an effect of sensation, and sleeping is an enfcebled condition of sensation, ${ }^{5}$ and 3° nothing of this kind is found in that which regetates at all times in the same condition, and is itself naturally without sensation. When an animal takes food, a vapour rises from the food into its head and it falls aslecp, ${ }^{6}$ and, when the vapour which rises to its head is consumed, it 35 wakes up. In some animals this vapour is plentiful and yet ${ }^{7}$ they sleep but little. Sleep is the suppression of motion and this involves the quiescence of the thing moved.
The most important and appropriate subject of inquiry to which arises in the science of botany is that proposed by $817^{\text {a }}$ Empedocles, namely, whether female and male sex is found in plants, or whether there is a combination of the two sexes. ${ }^{8}$ Now we assert that when the male generates it generates in another, and when the female generates it generates from another, ${ }^{9}$ and both are mutually separate. s This is not found to be the case in plants ; for in a particular species the produce of the male plant will be rougher,

[^43]harder, and stiffer, ${ }^{1}$ while the female will be weaker but more productive. We ought also to inquire whether the so two kinds are found in combination in plants as Empedocles states that they are. But my opinion is that this is not the case, for things which mingle together ought first to be simple and separate, and so the male will be separate and the female separate; they afterwards mingle, and the ${ }^{15}$ mingling will only take place when it is produced by generation. A plant, therefore, would have been discovered before the mingling had taken place, and it ought therefore to be at the same time an active and a passive agent in the process of production. The two sexes cannot be found 20 combined in any plant; if this were so, a plant would be more perfect than an animal, because it would not require anything outside itself in order to generate; whereas the plant does require the right season of the year and sunshine and its natural temperature more than anything, requiring them at the time when the tree sprouts. The nutritive ${ }_{25}$ principle in plants is derived from the earth, the gencrative principle is derived from the sun. Wherefore Anaxagoras said that the seeds of plants are borne down from the air, and other philosophers who profess the same doctrine call the earth the mother and the sun the father of plants. ${ }^{2}$ 3_{0} But we must suppose that the mingling of the male and the female in plants takes place in some other way, because the seed of a plant resembles the embryo ${ }^{3}$ in animals, being a mixture of the male and female elements. And just as in an egg there exists the force to generate the chicken and the material of its nutriment up to the time when it reaches perfection and emerges from the egg, and the female 35 lays the egg in a short space of time; so too with the plant. And Empedocles is right when he said the tall trees bear

[^44]their young ; ${ }^{1}$ for that which is born can only be born from a portion of the seed, and the rest of the seed becomes at first the nutriment of the root; and the plant begins to move ${ }^{2}$ as soon as it is born. This, then, is the opinion 40 which we ought to hold about the mingling of the male and female in plants, similar to that which we hold about 817^{b} animals. This process is the cause of plants under a certain disposition of circumstances ; for in the case of an animal when the sexes mingle and afterwards separate a single offspring is produced from them both. But this is not the 5_{5} case with plants ; when the sexes mingle, it is the forces of the sexes which mingle. ${ }^{3}$ And if nature has mingled the male and the female together, she has followed the right course ; and in plants the only operation which we find is the generation of fruits ; and an animal is only separated io at the times when it is not having sexual intercourse, and this separation is due to its multifarious activities and intellecţual pursuits.

But there are some who hold that the plant is complete and perfect because of its possession of these two powers, ${ }^{4}{ }^{15}$ and because of the food which is adapted to feeding it, and the length of its existence and duration.5 When it bears leaves and fruit its life will continue and its youth return to it. No excrement ${ }^{6}$ will be produced from plants. A plant docs not require sleep for many reasons, for it is 20 placed and planted in the earth and attached to it and has no movement of itself, nor has it any definite bounds to its parts, nor does it possess sensation or voluntary motion, or a perfect soul ; nay, it has only part of a soul. ${ }^{7}$ Plants
${ }^{1}$ Cf. Empedocles (Diels, Vorsokr. fr. 79)

${ }^{2}$ i.e. in growth.
${ }_{3}$ The writer seems to be arguing that the process of sexual intercourse in plants and animals is radically the same; but while in animals the sexes are separated and have to come together for sexual intercourse, in plants the forces of the two sexes are combined, and the result of this combination is shown in the production of fruits. Following Meyer, the words commiscentur rires sexuum $\left(817^{6} 4\right)$ and postquam separati sunt $\left(817^{b} 7\right)$ have been omitted.
${ }^{4}$ i.e. male and female sex.
${ }^{5}$ Cf. de long. et brev. vit. $467^{\mathrm{a}} 6 \mathrm{ff}$.
${ }^{6}$ Superfluum $=\pi \epsilon \rho і т \tau \omega \mu a, P . A .650^{a} 22$.
${ }^{7}$ Partem partis animae, an Arabic turn of expression=aliquam partem animae.

25 are only created for the sake of animals, and animals are not created for the sake of plants. Some one will urge that a plant requires food which is easily obtained and poor, yet it needs it very regularly and continuously, and without interruption. If it were agreed that a plant has an advan30 tage over an animal, it would follow that things which are inanimate ${ }^{1}$ were better and nobler than those which are animate ; yet we see that the function of the animal is nobler and better than that of the plant, and we find in the animal all the virtues which are present in the plant 35 and many others. ${ }^{2}$ Empedocles said that plants had their birth when the world was yet small and its perfection not attained, whilc animals were born after it was completed. ${ }^{3}$ But this account of creation does not suit the facts, for the world as a whole has existed continuously from eternity 40 and has never ceased to produce animals and plants and 818^{a} all their species. In every kind of plant there is natural heat and moisture, and, when these are consumed, the plant will become weak and grow old and decay and dry up. ${ }^{4}$ Some people call this corruption, others do not.

Some trees contain a gummy substance, such as resin 3 5 and almond-gum and myrrh, and frankincense, and gumarabic. Some trees have fibres ${ }^{5}$ and veins and flesh ${ }^{6}$ and wood and bark and marrow within them; some trees consist almost wholly of bark. In some the fruit is underneath the bark, that is, between the bark and the wood. 10 Some parts of the tree are simple, such as the moisture found in it and the fibres ${ }^{5}$ and veins; other parts are

[^45]composite, ${ }^{1}$ such as the branches and twigs and the like. These are not all found in all plants; for some have composite and some simple parts, while others do not have them. Some plants possess various other parts as well is (roots, twigs), leaves, ${ }^{2}$ pedicels, ${ }^{3}$ flowers, catkins, tendrils, ${ }^{4}$ and bark surrounding the fruit.

Just as in the animal, so also in the plant there are members consisting of similar parts, and some of the parts of a plant are composed of other members. The bark of a plant resembles the skin of an animal, while the root of a plant is like the mouth of an animal, ${ }^{5}$ and its fibres ${ }^{6}{ }_{20}$ are like an animal's muscles, and so with its other parts. Any of these parts can be divided on one principle into similar parts, or a division can be made by dissimilar parts ${ }^{7}$ (just as mud can be divided in one way into particles of earth only and in another into particles of water $;^{8}$ similarly the lungs and flesh can be divided up on one principle 25 so that they are pieces of flesh, while on the other principle they can be divided into their elements or radical parts). But a hand cannot be divided up into another hand, nor a root into another root, nor leaves into other leaves; but these roots and leaves are themselves the result of 30 composition. Some fruits are composed of few parts, some of many-olives, for example, which are made up of bark and a fleshy substance and a shell and a seed. Some fruits have as many as three corerings. All seeds consist of two bodies. ${ }^{9}$ We have now mentioned the parts of which individual plants consist. The conclusion of our discussion 35 is this: it is a difficult task to determine the parts of the
${ }^{1}$ Omitting ex his with the Basle MS.
${ }^{2}$ The words radices, virgas are probably interpolated: they do not occur in the parallel passage of Theophr. (l.c. 2, 1), and virgaf have been named already, while all plants have radices.
${ }_{3}$ Ramos have already been mentioned, the word probably represents the μ ioxos (pediculus) of Theophr.
${ }^{4}$ Pullulationes are probably the Bpin of Theophr., and rotunditutem represents ểı ξ. $\quad{ }_{5}$ Cf. G.A. $412^{\mathrm{b}} 3$; de iuv, et sen. $468^{\mathrm{a}} 9$.
${ }^{6}$ Nodos $=$ fibras as above.
${ }^{7}$ Cf. $H . A .486^{\mathrm{a}} 5 \mathrm{ff}$. and D'A. W. Thompson's note.
${ }^{8}$ The latter is an example of division by dissimilar parts, mud being divided into its component parts, earth and water ; the division by similar parts would be into particles of mud.
${ }^{9}$ Cf. above $817^{7} 37$.
plant in general, ${ }^{1}$ and its coverings and its variations, and in particular, to define its essential nature and its colour, and the period of its duration, and the effects which are produced upon it. Plants have not fixed habits of mind and the power of action like that possessed by animals ; ${ }^{2}$ and if we compare the parts of an animal with those of a plant, our discussion will be a long one, and we shall not avoid considerable differences of opinion in naming the parts 5 of plants. For a part of a thing is of its own kind and of its own particular substance, and, when it is once produced, any special part ${ }^{3}$ will remain in its original condition, unless it departs from it owing to some long continued infirmity. Flowers, fruits, and leaves will, in some cases, be produced 10 annually, in others they are perennial; ${ }^{4}$ they have not the same permanence as the bark and body of a plant (though even this is shed under the influence of burning heat, being stripped off by the desert wind $\left.{ }^{5}\right) \ldots{ }^{6}$ This does not happen in plants ; for various undetermined parts of plants are often shed (like hair in the case of man and claws in the ${ }^{5} 5$ case of animals), and in their stead other parts grow either where the lost parts were, or elsewhere in some other place. It is clear from this that it is not determined whether the parts of a plant are really parts or not. It is wrong for us to say that those things with which a plant ${ }^{7}$ grows and 20 by which it reaches completion are not parts of it ; but the leaves and everything that is found in a plant ${ }^{8}$ are parts of that plant, although they are not determined and are gradually shed; for the antlers of a stag and the hair of

[^46]certain animals, and the fur of certain of those which 25 hibernate in hollows underground, fall off, and this process resembles the shedding of leaves. ${ }^{1}$

We ought, therefore, to treat of the subjects which we mentioned first, and begin by enumerating the parts which are peculiar to certain plants and those which are common to all, and their differences. Let us say, thercfore, that there 30 is a great diversity in plants in respect of number and fewness, largeness and smallness, and in respect of strength and weakness. The reason of this is that the moisture ${ }^{2}$ which is found in large trees, is in some trees, the fig, for 35 example, like milk, in others it is like pitch, as in the pine, in others it is watery, ${ }^{3}$ like the liquid found in the vine, in others it is acrid, ${ }^{4}$ like that found in marjoram and in the herb called opigaidum. ${ }^{5}$ There are also plants which have their parts dry. Some plants have their parts well defined, 40 and neither alike nor equal in size; others have parts which are similar to one another but not equal, in others they are equal but not similar, and their position is not fixed. ${ }^{6}$ The differences of plants are recognized in their $\mathbf{8 1} \mathbf{9}^{\mathbf{a}}$ parts, their form ${ }^{7}$ and colour and sparseness and density and roughness and smoothness, and all ${ }^{8}$ their incidental differences of taste, ${ }^{9}$ their inequality of size, their numerical 5 increase and decrease, their largeness and smallness. Some plants, too, will not be uniform, but will show great variation, as we have already said.

4 Some plants produce their fruit above their leaves, others beneath ; in some plants the fruit is suspended from the Io stock of the tree, in others it grows from the root, as in the
${ }_{1}$ Cf. Theophr. l.c. i. I, 3.
${ }^{2}$ The Aristotelian doctrine that moisture is the principle of plants is here again emphasized. Cf. above, $818^{\mathrm{a}} 2$ and note.
${ }^{3}$ Meyer adds here ut in abiete et in quibusdam est aquosus, compar-
 д̀ $\mu \pi \epsilon$ '̀ $о v$.
${ }^{4}$ The MSS. read originalis which makes no sense; Meyer reads origunaiis, 'like marjoram,' i.e. 'bitter, acrid,' but the word is probably corrupt. ${ }^{5}$ This word is hopelessly corrupt.
${ }^{6}$ 'Non est locus in situ, i.e. locus non est definitus' (Meyer).
${ }^{7}$ Figurae, \&c.. 'vertendum potius fuisse arbitror cognoscitur et figura et colore,' \&c. (Meyer).

8 'Omnia vertendum fuisset omnibus' (Meyer).
${ }^{\text {g }}$ Meyer adds saporum from Theophr. l.c. § 6 ס̂taфopai $\tau \omega ิ \nu \chi \nu \hat{\omega} \nu$.

Egyptian trees which are called vargariaton ${ }^{1}$ ；in some cases it grows in the middle of the plant．In some plants the leaves and knots ${ }^{2}$ are not separated；in others the leaves i_{5} are equal in size and similar to one another，and some of those which have branches have branches equal in size． The following parts，which we will name，are found in〈almost〉 all plants，${ }^{3}$ and admit of growth and addition－ namely，the root，the shoots，the stem，and the branches； these resemble the limbs of animals which include all the 20 other limbs．The root acts as an intermediary between the plants and its food，and for that reason the Greeks call it the root and cause of life in plants，for it supplies the plant with its means of life．The stem is the only part which grows out of the ground and forms，as it were，its erect ${ }_{25}$ stature．The suckers are the parts which sprout from the root of a tree，while the branches are above the suckers． They are not found in all plants ；and in some plants which have branches these are not permanent，but only last from 30 year to year．There are plants which do not have branches or leaves，fungi，for example，and mushrooms．Branches are only found on trees．Bark and wood and the pith of a tree are produced from moisture ；some call this pith the womb 3.5 of the tree，others the vitals，others the heart．The fibres ${ }^{4}$ and veins and flesh of the whole plant are made up from the four elements．Parts are often found which are adapted to reproduction，leaves，for example，and flowers and small twigs（which are flowers outside the plant）；${ }^{5}$ the fruit and 40 leaves on a plant grow in the same way，being produced ${ }^{6}$ from the seed and the shell which surrounds it．

Of plants some are trees，some are midway between trees

[^47]and herbs and are called bushes, ${ }^{1}$ some are herbs, and some are vegetables. Almost every plant falls under one of these classes. A tree is a plant which has a stem growing from its root, from which stem numerous branches grow, olive- : trees, for example, ${ }^{2}$ and fig-trees. A plant which is something between a tree and a small herb, and is called a bush, has many branches growing out of its roots, like the thorntree ${ }^{3}$ and bramble. Vegetables are plants which have a number of stems growing out of one root and a number io of branches, rue, for example, and cabbage. Herbs are plants which have no stem, but their leaves grow out of their roots. Some plants are produced and dry up every year, wheat, for example, and vegetables. We can only indicate these various classes of plants by gencral inferences, 15 and by giving examples and descriptions. Some plants verge on two very different classes, mallow, ${ }^{4}$ for example (since it is both a herb and a regetable), and likewise bect. Some plants grow at first in the form of low bushes ${ }^{5}$ and afterwards become trees, as, for instance, the nut-tree, the 20 chaste-tree, and the plant called 'goatberry '. ${ }^{6}$ Perhaps myrtles, apple-trees, and pear-trees fall also under this class, for all of them have a number of superfluous stems growing from their roots. It is worth while to specify these that they 2_{5} may serve for purposes of example and inference, but we must not investigate the definitions of every kind of plant.

Some plants are indoor plants, others garden plants, and
${ }^{1}$ Ambraihion, which the Greek version translates $\theta a \dot{\mu} \nu o s$, is otherwise unknown, but its meaning is clear from the context.
${ }^{2}$ Reading ut for et .
${ }^{3}$ Magnus cannae is irgeniously explained by Meyer. Theophr. l.c.
 Arabs they translated ma入iovpos by moǵanas el-'henna, 'that which resembles 'henna ($=$ Lavesonic inermis)': the Latin translator misunderstanding this expression transliterated it into magmus camuce.
${ }^{4}$ Meyer shows by comparison with the parallel passage of Theophr. l.c. 2, that mallow is here intended, and that olus regium has arisen from a confusion of two Arabic words matukîa ('mallow') and mulukijjiz ('royal').
${ }_{5}$ Granorum plantae, in Arabic habbît, has been confused with the Arabic chabî ('low growing ').
${ }^{6}$ Theophr. l.c. has here äyvos, кıттós, and ì 'Hраклєштькฑ̀ карv́a. According to Meyer fingekest is the Persian for vitex (= ̈lyvos), z'ovet is a corruption of the Arabic fufel ($=$ avellana Indica) and bacca caprarum represents кıттós, 'ivy '. Ivy, however, can hardly be said to grow into a tree.
others wild, in the same way as animals. I think, too, that 30 all species of plants which are not cultivated become wild. Some plants produce fruit, others do not; some bear flowers, others do not; some have leaves and not others ; some plants shed their leaves, others do not. Plants differ 35 greatly in their large or small size, in beauty and ugliness, and in the excellence, or the contrary, of their fruits. Trees in a wild state bear more fruit than garden trees, but the fruit of the garden tree is better than that of the wild. Some plants grow in dry places, some in the sea, others in ${ }_{40}$ rivers. Plants which grow in the Red Sea will there reach a great size, whereas they are only small in other places. ${ }^{1}$ $820^{\text {a }}$ Some plants grow on the banks of rivers, others in standing water. Of plants which grow in dry places, some grow on mountains, others in the plain; some plants grow and flourish in the most arid districts, as, for example, in the ${ }_{5}$ land of the Ethiopians which is called Ziara, ${ }^{2}$ and increase there better than anywhere else. Some plants live at high altitudes, some on moist ground, others in dry, others equally well in either, as, for instance, willow and tamarisk. A plant changes very much with a difference of locality, io and such variations must be taken into consideration.

A plant which is fixed in the ground does not like to be 5 separated from it. Some places are better for certain plants than others; similarly some fruits are better in one place ${ }_{15}$ than in another. In some plants the leaves are rough, in others smooth ; in some they are small, in others they are cleft as in the vine. Some trees have a single bark, as the fig, others have several layers of bark, as in the case of the pine; some are bark throughout, as, for example, the mediannus. ${ }^{3}$ Some plants have joints, reeds, for example ; 20 some have thorns, like the bramble. Some have no branches, others have a great number, like the sycamore. ${ }^{4}$ Other plants show various differences; for instance, suckers grow from some and not from others; this can only be due to a difference in the root. Some plants ${ }^{5}$ have a single root

[^48]only, the squill for example ; for it grows in a single shoot 25 and spreads by expansion underground, and will increase as it grows more and more and approaches the sunlight, because the sun draws out its scales.

Of the juices which are found in fruits, some are drinkable, as, for instance, the juice of grapes, pomegranates, 3° mulberries, and myrtles. Some juices are oily, as in the olive and pine-nut; others are sweet like honey, as in the date and fig ; others are hot and pungent, as in marjoram 35 and mustard ; others bitter, as in wormwood and centaury. Some fruits are made up of a fleshy and a bony substance and a seed, plums for example; others, cucumbers for instance, are made up of a fleshy substance and seeds, others 40 of moisture and seeds like the pomegranate. Some have rind outside and seed inside, others flesh outside and seed inside ; in others one comes immediately upon the seed $\mathbf{8 2 0}{ }^{\text {b }}$ with the envelope which encloses it, as in dates and almonds; in others this is not so. Fruits are edible or inedible accidentally, and some people can eat certain fruits while others cannot, and certain animals can eat certain fruits while 5 others cannot. Some fruits, again, are in pods, like seeds; others in sheaths, like weapons, wheat for example ; others are enclosed in a fleshy substance, dates for instance; others in husks, ${ }^{1}$ acorns for example, and some in several io husks, a cuticle ${ }^{2}$ and a shell, walnuts ${ }^{3}$ for example. Some fruits mature quickly, like mulberries and cherries, others slowly, as do all or most wild fruits. Some plants produce ${ }^{15}$ their leaves and fruits quickly, others slowly ; some wait for the winter before coming to maturity. The colours of fruits and flowers vary very much. One plant is green throughout, another has a tendency to blackness, another 20 to whiteness, another to redness. Also the conformation of the fruit, if it be wild, varies considerably ; for all fruits are not angular, nor do they take the form of straight lines. 25

6 In aromatic trees it is sometimes the root which is aromatic, sometimes the bark, sometimes the flower, and

[^49]sometimes the wood ; in other cases every part is aromatic, in the balsam for example.

Some trees come into existence by being planted, some z_{0} from seeds, others spontaneously. Those which are planted are separated either from the root, the stem, the branches, or the sced, or else the whole is transplanted; some are slightly bruised before being planted. Some are planted in the earth, others are planted, that is, grafted, on other trees.

35

 Gratting of one on another is better in the case of trees which are similar and have the same proportions; the best results are obtained in the grafting, for instance, of apple on pear, fig on fig, or vine on vine. Sometimes grafting 40 of different species is resorted to, bay, ${ }^{1}$ for example, on wild plane, ${ }^{2}$ olive-trees on terebinth, ${ }^{3}$ mulberries on a number $82 \mathbf{I}^{\text {a }}$ of different trees, and wild trees on garden trees. Every plant does not produce a seed similar to that from which it is sprung; some produce a better seed, others a worse, and good trees sometimes grow from bad seeds, as in the 5 case of bitter almonds and pomegranates. In some trees too, when they are weak, the seed fails, in the pine for example, and the palm. But a good plant is not likely to be produced from a bad seed, nor a bad tree from a good so seed. Instances, however, of good producing bad and vice versa often occur among animals.A tree which has hard bark and has become barren, if its root be split and a stone inserted in the cleft will become fruitful again. In palms too, if the leaves or pollen or bark of the male palm be applied to the leaves ${ }_{15}$ of the female palm so as to cohere, its fruits will come to maturity quickly, and it will prevent their falling off. The male can be distinguished from the female palm, because it sprouts first and its leaves are small, and also because of its odour ; sometimes all these conditions are present, 20 sometimes only some of them. It will perhaps happen that the wind will bear the odour of the male to the female palm, and then the dates will come to maturity ; the foliage of the male will also cohere to that of the female palm when

[^50]they catch in one another. Wild fig-trees, too, spread along the ground and are attracted by garden fig-trees; similarly wild olives are attracted by olives, when they 25 are planted together.

7 Again, some plants change into wher species, the nuttree, for example, when it becomes old. It is also said that catmint changes into mint, and basil, if plucked up and 30 planted by the Persian Gulf, will perhaps turn into thyme. Also wheat and flax change into tares. ${ }^{1}$ The poisonous nightshade ${ }^{2}$ which grows in Persia changes its nature if transplanted into Egypt and Syria and becomes edible. Almond-trees and pomegranates change their condition for 3 : the better under cultivation. Pomegranates are improved by being manured with pigs' dung and watered with fresh cold water. Almond-trees with pegs driven into them exude gum for a long while. Many wild plants are thus 40 artificially changed into garden plants. Position and care, $82 \mathrm{I}^{\text {b }}$ and, above all, the season of planting, contribute to this process. Some plants require some one to plant them, others do not. Most plants are planted in the spring, a few in the winter and autumn, very few in the summer after 5 the rising of the dogstar; planting at this season takes place in few places-nowhere except in the Crimea. ${ }^{3}$ In Egypt planting only takes place once in the year.

Some trees produce shoots ${ }^{4}$ from their roots, some from their buds, some from the wood, others from every part. 10 In some they are near the ground, in others far from it, in others they are neither high nor low: others produce a few shoots at various times. Some trees bear fruit once a year, others several times, and their fruit does not mature, but remains unripc. Certain trees are very fruitful over a long period, as, for instance, fig-trees. Some ${ }^{5} 5$ bear fruit one year and then recuperate for a year, as do olive-trees, although they produce a number of boughs which cover them. Some trees are more productive when

1. Seilam, Arabic schailam $=$ Lotium (Meyer).
${ }^{2}$ Or perhaps 'henbane' (Meyer).
${ }^{3}$ These words are certainly corrupt. Meyer thinks that Coruma is the Arabic Qirm, 'the Crimea'.
${ }^{4}$ 'Folia errore quodam dictum pro germina ($\beta \lambda a \sigma \tau \eta \mu a \tau a$)' (Meyer).
they are young than when they are old; others, on the contrary, are more fertile when they are old, almond-trees, 20 for example, and pear-trees and holm-oaks. Wild and garden plants can be distinguished by identification with the male and fcmale, each being recognizable by its peculiar characteristics ; for the male is thicker and harder and has more branches and less moisture and a smaller fruit, and ${ }_{2}$: does not reach such maturity ; the leaves, too, and likewise the twigs, are different. ${ }^{1}$

After these considerations we ought to form some conclusions in order that we may know trees and their various kinds apart, and similarly in the case of small herbs. We must consider what the ancients have said on these points, 30 and examine the works written upon them. We shall only be able to take a brief survey and extract the cssence of them. This means that we shall consider those plants which contain oil, those which produce seeds, and those which produce wine, and plants which have medicinal 35 properties, and those which destroy life. All these particu. lars about trees and plants are well known. But in order to know their causes, we ought to inquire into their production, and discover why certain plants grow in certain places and not in others, and at certain seasons and not at others ; we must examine their methods of planting, their 4_{0} roots, their differences of sap and odour and juice and gum, 822^{a} and the excellence and defects of particular plants, and the fact that the fruits of some trees last but not those of others, and why some fruits putrefy quickly, others more slowly. We must inquire into the properties of all plants, 5 and particularly those of their roots; and why some fruits grow soft while others do not; and why some affect the bowels, others cause sleep, and others are fatal to life ; and many other differences.

[^51]I A plant has three powers, the first derived from the element of earth, the second from that of water, the third from that of fire. From the earth the plant derives its solidity, from water the unity, and from fire the concretion 1 : of its solidity. We see much the same thing in vessels of pottery, which contain three elements-clay, which is, as it were, the material of pottery; secondly, water, which binds the pottery together ; and, thirdly, fire, which draws its parts together, until it completes the process of manu-20 facture. The appearance, then, of complete unity is due to the fire ; because rarity is present in pottery according to the composition of its parts, and, when the fire heats them, the moist matter is solidified, ${ }^{1}$ and the parts of the clay will cohere together. Dryness will thus take the place of moisture, owing to the predominance of the fire and the 25 process of concoction ${ }^{2}$ which takes place in all animals, plants, and metals. For concoction takes place where moisture and heat are present, when the struggle between them is allowed to run its course; and this is what will take place in the concoction of stone and metals. ${ }^{3}$ It is not so in animals and plants ; for their parts are not closely compacted, and so there is an escape of moisture from them. 30 But in metals there is no such escape of moisture or sweating, because their parts have no rarity, and therefore they can give up nothing except parts of themselves to correspond to certain superfluities which are given off by animals and plants. This escape of moisture can only take place where rarity is present ; and so where there is 35 no rarity, nothing at all can be given off. Therefore that which cannot be increased is solid, because that which might increase lacks space in which to dilate and grow ; and therefore stones, salt, and earth are always the same,

[^52]neither increasing nor growing. There is motion in plants in a secondary sense, ${ }^{1}$ and this is a form of attraction, namely, the force of the earthly element ${ }^{2}$ which attracts moisture ; in this attraction there will be motion, and the moisture makes for a certain position, and the process of 5 concoction is thus in a certain way completed. And so small plants usually come into being in the short space of a single day, ${ }^{3}$ unlike animals; for the nature of animals is in itself different ; for no concoction will take place except by the use of material in the animal itself. But the material of which the plant is formed is near at hand, ${ }^{4}$ and therefore so its generation is quick, and it grows and increases, because it is rare, more quickly than if it were dense. For that which is dense lacks many powers on account of the diversity of its form and the extension of its parts in relation to one another. Consequently the generation of a plant is ${ }^{15}$ quicker on account of the similarity of its parts to one another, ${ }^{5}$ and the completion of its growth is speedier. Now the parts of plants are usually rare, because the heat draws the moisture into the extremities of the plant, and the material is distributed through all its parts, and that which is superfluous will flow away; just as in a bath the 20 heat attracts the moisture and turns it into vapour which rises, and, when it is present in superfluity, it will turn into drops of water. Similarly in animals and plants, the superfluities ${ }^{6}$ ascend from the lower into the upper parts and then descend in their action from the upper to the lower 25 parts.

We find the same phenomenon in streams which are generated underground and come forth from mountains, and whose material is rain. When the waters increase and are confined within the earth, an excess of vapour will be produced from them on account of their compression underground, and the vapour will break its way through 30 the earth and fountains and streams will appear, which were formerly hidden.

[^53]2 We have set forth the causes which produce springs and rivers in the book on Meteorology. ${ }^{1}$ An earthquake frequently discloses springs and rivers which had not before 35 been visible, when the earth is rent by vapour. We also often find that springs and rivers are submerged when an earthquake takes place. But this does not happen in the case of plants, because air is present in the rarity of their $823^{\text {a }}$ parts. This can be illustrated by the fact that an earth quake never takes place in sandy localities, but only where the ground is hard, that is in districts of water and mountains. Earthquakes occur similarly in these districts, 5 because water and stone have no rarity in them, ${ }^{2}$ and it is the nature of warm, dry air to ascend. When, therefore, the particles of air become massed together, they gain force and thrust up the ground and the vapour makes its way out; whereas, if the ground were rare, ${ }^{3}$ the vapour io would make its way out gradually from the first. But the ground being solid, it does not make its way out gradually, but its parts collect, and it is then strong enough to rend the earth. This, then, is the cause of earthquakes 15 in solid bodies; there will, therefore, be nothing to correspond to an earthquake in the parts of plants and animals, though it will occur in other things-often, for example, in pottery and glass, and in some cases in minerals. Any body which has considerable rarity tends to rise upwards, for the air supports it. This we often sce when we throw 20 a gold coin or some other heavy substance into the water and it immediately sinks; whereas if we throw in a piece of wood, which has rarity in it, it does not sink. A gold coin sinks not because of its leaf-like form ${ }^{4}$ nor on account ${ }^{25}$ of its weight, but because it is solid. That which has rarity can never altogether sink. Ebony ${ }^{5}$ and similar substances sink because there is very little rarity in them, and therefore there will not be air present to support them ; and so they

[^54]so sink, because their parts are practically solid. Oil and fat ${ }^{1}$ always float on the surface of water. We will now give ${ }^{2}$ the reason of this. We know that heat and moisture are present in these substances; and it is characteristic of moisture to cohere with particles of water, while it is charac-
3 teristic of heat that it causes moisture to rise and makes its way towards the particles of air; and it is the habit of water to raise objects to its surface, and of air to rise upwards; ${ }^{3}$ and water does not rise above its surface, because the whole surface of the water is one and the same, 40 and consequently the air rises with the oil above the water. Some stones ${ }^{4}$ too float on water, because rarity is present in them and is greater in quantity than the matter of which $823^{\text {b }}$ they are formed, and consequently the space occupied by air will be greater than that occupied by the earthy element. It is the nature of water to take up a position above the earth, and of air to rise above water ; the material, therefore, which composes the stone, which is of the element \therefore of earth, sinks in the water, while the element of air enclosed in the stone rises above the water. Each element therefore attracts its like in a contrary direction to the element with which it is combined. If, then, one element is equal to the other, ${ }^{5}$ half the stone will be submerged and half will project above the surface; but if the air is present 1o in greater quantity, the stone will float above the water. The weight of trees is made up in the same way. ${ }^{6}$ (These stones are due to a violent collision of waves, and are originally foam which forms a white oily substance ; when the wave is dashed against the sand, the sand will collect 15 the oily foam, and the dryness of the sea will dry it up together with the superfluous salt, and the particles of sand will collect, and thus in the long process of time stones will be formed.)

[^55]The presence of sand under the sea is explained by the fact that earth always has a fresh flavour, ${ }^{1}$ and when water ${ }_{20}$ stands it will be prevented from undergoing any change, ${ }^{2}$ and will form an enclosed mass of water in the place where it is, and the air will not draw it up ; the particles of earth, therefore, gain the upper hand and become salty, and gradu- ${ }_{2}$ ally acquire heat. ${ }^{3}$ (Now earth is found in its natural state in fresh running water, because there the water is sweet and light. $)^{4}$ And because the dryness of the earth gains the upper hand in the water, it changes it into an earthy nature, or something like it, and makes both the earth and 30 water crisp ; and this process of drying goes on as long as the earth remains in its place and there is water still left, and it splits up the soil into small particles; and for this reason the earth near the sea is always sandy. The same thing happens on plains which have nothing to protect 35 them from the sun, and which are far from fresh water; the sun has dried up the particles of fresh moisture and that which is of the nature of earth has remained ; and because the sun shines continually upon an exposed place of this kind, the parts of the soil become separated and sand is \dagger° thus formed. A further proof of this is that if we dig deep down in a desert, we shall find natural soil. Natural soil, therefore, will be the basis of sand, and will only become $824^{\text {a }}$ sand accidentally and under certain circumstances, namely, when the sun's rays dwell on it for a long time and it is far removed from fresh water. The saltness of the sea is to be accounted for in a similar way ; for the basis of all water ${ }_{5}$ is fresh water, and saltness is accidental, occurring only under the circumstances which we have mentioned. The fact that the earth is below the sea and the sea naturally and necessarily above the earth is a self-evident proof of

[^56]10 this. ${ }^{1}$ Some, however, have held that the common element is that which is present in the greatest quantity, ${ }^{2}$ and that there is a greater quantity of water in the sea than elsewhere, and that, therefore, sea-water is the element present in all water. But water naturally has its position above the earth and is lighter than it ; for we have already shown
15 that water is at a higher elevation than the earth according to the altitude at which the mass of water stands. Let us take two vessels of the same size and place fresh water in one and salt water in the other; then let us take an egg 20 and place it in the fresh water; it will sink, whereas, if we place it in the salt water, it will float. ${ }^{3}$ It therefore rises above the particles of salt water because these particles do not let it sink, ${ }^{4}$ as do those of fresh water, but they can ${ }_{25}$ uphold the weight, which therefore does not sink. So in the Dead Sea ${ }^{5}$ no animal can sink, nor is any animal life produced in it, because dryness predominates in it and it is like the form of earth. It is clear, therefore, that dense water finds a lower level than water which is not dense; 30 for the dense is of the nature of earth, the rare of the nature of air; therefore, fresh water stands at a higher elevation than any other water, and is therefore further removed from earth. Now we already know that the water which is furthest removed from earth is the natural water, and we $3:$ have shown that fresh water is higher in position than all other kinds of water; it therefore follows certainly and necessarily that it is the natural water. Salt water is also produced in pools, because fresh water becomes salt. The saltness, therefore, of the earth by its saltness prevails 40 over the fresh water and the air will remain enclosed, and the mass of water will not therefore be fresh. Saltness
$824^{\text {b }}$ may also be produced from water by being given off from it like sweat. ${ }^{6}$

[^57]3 So too in the case of plants: their species will be formed, not from a simple element, but by a process of composition, just as saltness and the substance of sand are formed in ${ }^{1}$; the water of the sea. For vapours which rise, when they become solidified, will be able to conceive these plants, and the air will descend and bedew the ground, and from it will come forth the form of their seeds through the power- io ful influence of the stars. But plants must necessarily have some material, and this material is water. There are, however, different kinds of water, and water only rises if it is fresh, and salt water is heavier than fresh; and so 15 that which rises above water is rarer than water. When, therefore, the air draws it up, it will become rarefied and rise still higher; and this is why fountains and streams are formed in mountains. Similarly phlegm and blood rise to the brain, and all foods ${ }^{2}$ also rise; so too all water 20 rises. Even salt water rises in that part of it which heat dries out into the element of air, and, because air is always higher than water, that which rises from salt water is fresh. We shall often find the same thing taking place in baths. 25 When heat takes hold of salt water, its parts will be rarefied, and vapour will rise in a contrary direction to the depth of the bath, and the particles of salt and the natural moisture become separated, for the latter is of the nature of air and 3° follows the vapour; and cloud after cloud of vapour rises upwards, and when they reach the top of the room they press upon one another. The vapour will thus collect and become condensed, and will turn into drops of fresh water dripping down, and so in salt baths the vapour will always 35 be fresh.

Plants ought not to grow in salt water, on account of its low temperature and dryness. This means that the plant lacks two things-its proper material and a position suitable to its nature; ${ }^{3}$ when these two conditions are present a plant will grow. Now we find that snow is the 40 substance furthest removed from an equable temperature,

[^58]and its most striking characteristic ${ }^{1}$ is the impossibility of $825^{\text {a }}$ its existing in a temperate region. We do not, therefore, find plants growing in snow; yet we often find plants appearing in the snow, and animals of all kinds, especially worms (for they are bred in the snow), and mullein and all © bitter herbs. But it is not the snow which causes ${ }^{2}$ this to be so; but a certain characteristic of snow is active. The reason is that snow falls like smoke, and the wind congeals it and the air binds it together. There is therefore rarity amongst its parts, and air will be retained in it and will grow hot, and foul water flows from it, which had 10 before enclosed the air; and when the air is present in considerable quantities and the sun shines upon it, the air which is enclosed in the snow will burst its way out, and a foul moisture will appear and will be solidified by the ${ }^{15}$ heat of the sun. ${ }^{3}$ But if the place is covered up by snow, plants will grow in it, but without leaves, because it is cut off from the equable temperature of the earth which is congenial to it. This is the reason why there are numerous flowers and leaves on small plants in places where the air 20 and water are temperate, and few flowers and leaves on a plant which occurs in the snow. So too in very salty and dry places plants do not usually appear, because these places are far from being temperate; and the ground is impoverished, because heat and moisture, which are the ${ }_{25}$ characteristics of fresh water, are absent. ${ }^{4}$ So the soil that is fresh is the mountain soil, and there plants grow quickly.

But in warm places, because there the water is fresh and the heat plentiful, the process of concoction proceeds quickly, partly as a result of the position and the air which 30 is found there, and partly because there is a concoction of the air owing to the heat of the sun there. On mountains, ${ }^{5}$ because they attract moisture and the clearness of the air assists the process, concoction proceeds apace; and therefore plants are generally found on mountains. In deserts

[^59]the saltness gains the uppor hand, as we have already os^{5} shown, and rarities resembling one another are left between the particles of sand; the sun has therefore no power to produce or perpetuate any continuous plant life; and so in deserts separate species of plants will not occur, but species similar to one another.
4 Plants which grow on the surface of the water will only to do so when there is density in the water; the reason of this is that, when heat touches water which has no current to $825^{\text {b }}$ move it, something of the nature of a cloud comes over it and retains a little of the air, and the moisture putrefies and the heat draws it up, and it spreads over the face of the water. Such a plant has no root, because roots will only 5 attach themselves to the hard particles of the earth, and the particles of water are loose and scattered. The heat then comes forth with the putrefaction which takes place on the surface of the water. Such a plant has no leaves because it is produced under conditions which are far from temperate, and its parts are not compact, because the parts of water are not compact. It is for this reason too that 10 such plants grow like threads. It is because the parts of earth are compact that the plants too which grow in the earth are compact. Sometimes putrefactions are set up in damp, smoky ground, and hold the air-the sun causing them to appear when rain and winds are frequent-and is the dryness of the earth will make their roots dry up and solidify, and thus fungi and mushrooms and the like will be produced. In places that are exceedingly warm, ${ }^{1}$ because the heat assimilates ${ }^{2}$ the water in the interior of the earth and the sun holds the heat, a vapour is formed zo and a plant is thus produced. This process takes place in all warm places, and the formation of the plant is thus completed. A cold locality causes a similar but contrary process; the cold air forces the heat downwards and its 25 particles collect together, and the ground undergoes concoction with the moisture present in it; the ground is then cleft open and a plant emerges from it. Where the

[^60]${ }_{30}$ ground is fresh, water is generally not far away. When, therefore, the air which is enclosed in the earth is stirred into motion, the moisture of the water will remain behind, and the air will solidify inside the water and a plant is 35 produced, such as the water-lily ${ }^{1}$ and various kinds of small plants; these plants grow straight up and do not expand, because their roots are above the carth. In places too where there is warm water running, plants often grow, 40 because the heat of the water attracts the vapours which are retained in the earth, and draws the cold moisture upwards, and air is solidified from the moisture, which it assimilates owing to the heat of the water, and a plant appears, but only after a long lapse of time. Small plants too appear in sulphurous places: and when the wind blows violently upon the brimstone, it will recoil ${ }^{2}$ back again, and the air which is in it will be stirred up, and the place 5 will become hot, and fire will be produced from it, and will continue to be produced from it, because it exists deep down in the brimstone, which is due to impurities deposited by the air; the fire attracts the air when the sulphur io putrefies, and a plant will be produced from it. Such a plant, as we have shown before, will not generally have many leaves, because it is produced under conditions which are far from equable.

Edible products will grow from plants in positions which are warm and slightly elevated, ${ }^{3}$ especially in the third and fourth zones ; fruits which fail to provide food ${ }^{4}$ grow in cold and high districts. Many species ${ }^{5}$ are produced in cold, ${ }^{5} 5$ high positions owing to the attraction of the moisture and the temperate conditions which prevail in the warmth of the sun on spring days. Similarly natural soil readily produces plants which are full of oil ; such soil, as we have already seen, ${ }^{6}$ is found ${ }^{7}$ where there is fresh water.

[^61]5 A plant which grows upon solid rock takes a long time 20 to grow ; for the air which is enclosed in the stone strives to rise, and when it cannot find a way, owing to the resistance of the stone, it retreats back again and becomes heated, and attracts the residuum of the moisture in the stone upwards, and with this moisture a vapour comes forth accompanied by a resolution of small particles of the stone ; 25 and because the sun often acts upon the stone, it assists the moisture in the process of concoction, and as a result a plant is produced. Such plants do not generally grow to any height, unless they are near some soil or moisture. The growth ${ }^{1}$ of a plant requires soil, water, and air. A rock plant will grow low, ${ }^{2}$ and if it faces the east, ${ }^{3}$ it will 30 grow quickly, and slowly if it faces the west. A plant, when water is the predominant element in it, will retain the air and will not allow it to rise, and thus the plant is not nourished. Similarly, when dryness predominates, the natural heat will be diverted into the extremities of the 35 plant and will block up the ducts through which the flow of water passed, and the plant does not reccive nourishment.

6 Every plant of whatsoever kind needs four things (just as an animal nceds four things), namely, a definite seed, a suitable position, and properly attempered water and air. When these four conditions are fulfilled, a plant will grow 40 and increase ; but if they do not harmonize, the plant will $826^{\text {b }}$ be correspondingly weakened. A plant which is used for medicinal purposes ${ }^{4}$ will be more serviceable and suitable for such purposes if it grows on high mountains; its fruit, however, will be harder to assimilate and will contain less nourishment. Places which are secluded from the sun's 5_{5} rays will not produce much plant life (just as they will not produce much animal lifc), because the sun makes the day long or short according to the duration of its presence or absence, ${ }^{5}$ and it is the sun which draws out the moisture ;

[^62]and so plants which grow in sunless places will not have the strength to produce leaves and fruit. As for plants ${ }^{\mathbf{1}}$ which 10 grow in watery places, when the water is still, a foulness is formed, and there will be no power in the air to rarefy the particles of water, and the air will be imprisoned inside the earth, and this will prevent the thick matter in the ${ }_{15}$ water from rising; then the wind will invade ${ }^{2}$ the spot and the earth will be cleft open, and the air which is enclosed will retreat into the earth, and the wind will solidify the moisture, and from this condition of moisture marsh plants will spring. Usually such plants do not differ from one another in form on account of the constant presence of water and its thick consistency and the heat of the sun 20 overhead. The plants which grow in damp places will appear like patches of verdure on the surface of the earth. In such a place there is, in my opinion, little rarity, and when the sun falls upon it, it will stir up the moisture and the spot will grow warm through the resulting motion and 25 the heat which is enclosed within the earth; and so there is nothing to cause the upward growth of the plant, while the moisture helps its expansion; and so it spreads over the earth in a sheet of verdure and produces no leaves. A kind of plant also grows which appears above the surface 30 of the water and is smaller in quantity than that just mentioned, because it is like the nature of earth, and it neither grows upwards nor expands. Often, too, one plant grows out of another plant of a different form from itself, without any root, and spreads all over the plant. For when 35 a plant which has numerous thorns and contains an oily juice moves, its parts will open and the sun will cause its putrefactions to turn into vapour, and the putrefied place of its own accord will produce a plant, and the wind and a moderate heat assist, and the parasite grows in the 40 form of threads and extends over the original plant. Para827^{a} sitism is a peculiarity of very thorny plants, dodder and the like.

[^63][There is also a class of plant which has neither root nor leaves, and another which has a stalk, but no fruit or leaves, the tamarisk, for example.] ${ }^{1}$

All herbs and all things that grow above or in the earth have their origin in one of fiveways, namely, either from seed, or from putrefaction, or from the moisture of water, or from being planted, or from growing as parasites on other plants. These are the five causes of plants.

7 Trees have three different methods of production ; they produce their fruit either before their leaves, or at the same s time as their leaves, or else after their leaves have grown. ${ }^{2}$ A plant which produces its fruit before its leaves contains I $_{2}$ a considerable amount of oily juice, and when the heat which is natural to the plant has assimilated the juice, its maturity will quickly follow, and the juice will acquire 15 force and boil up within the branches of the plant and will prevent the moisture from rising; the result is that the fruit appears before the leaves. But in plants which produce their leaves more quickly than their fruits, the effects of the moisture are various. When the heat of the sun begins 20 to disperse the particles of water, the sun attracts the particles of this moisture upwards, and the process of ripening will be delayed, because the concoction of the fruit will only take place through coagulation, and so the leaves come before the fruit. A plant which produces its leaves and fruit simultaneously has much moisture, and fre- ${ }^{2} 5$ quently also contains an oily juicc. When the heat has assimilated the moisture, it will, as a result, rise upward, carrying the juice with it, and the air and sun will draw it out, and the oily juice which forms the fruit will come out, while the moisture will produce the leaves, leaves and fruit coming forth together. The wise men of old used to assert that all leaves were really fruits, but so much moisture was 30 present, because the fruit did not mature or solidify owing to the presence of heat above and the sudden attraction

[^64]exerted by the sun, and consequently the moisture on which the process of assimilation had had no effect changed into leaves ; the leaves, they said, are simply intended to attract 35 the moisture and serve as a protection to the fruit from the violence of the sun. The leaves ought therefore, they said, to be equally regarded as fruit. But the truth is that the moisture rises above them and the leaves are converted into 40 real fruits, ${ }^{1}$ as we have already said. The same theory applies $\mathbf{8 2 7}{ }^{\text {b }}$ to olives, which often fail to produce fruit ; for when nature brings about concoction of moisture, some of the thin moisture, ${ }^{2}$ which has not matured, will rise first, and this will produce leaves and its concoction will produce flowers, and when in the second year the process of concoction is com5 pleted, the fruit will grow and will eventually use up all the available material according to the space which it has in it.

Thorns are not characteristic of plants or natural to them. My opinion is that there is rarity present in a plant, and concoction will take place at the beginning of its existence, and moisture and cold rise upwards, and they are 10 accompanied by a slight concoction; this circulates where there is rarity, and the sun causes it to solidify, and thus the thorns will be produced. Their form is pyramidal ; for they begin by being thin at the point and gradually grow thicker, because when the air is withdrawn from the plant ${ }^{5} 5$ its parts increase, as the material of which it is composed expands. The same is true of any plant or tree which is pyramidal at the top.

Greenness must be the most common characteristic of plant life ; for we see that trees are white internally and 20 green externally. The reason is that the material which supplies their nutriment is more readily accessible: it follows therefore that there is greenness in all plants, because their material is absorbed and rarifies the wood of the tree, and the heat causes a slight concoction, and the moisture remains in the tree and appears externally: consequently there will be greenness. This is also the case

[^65]with the leaves, unless the concoction in them is unusually 2_{5} powerful; and leaves are in respect of strength midway between bark ${ }^{1}$ and wood. But greenness does not persist, nor indeed come into existence without the presence of moisture, and is of the element of earth, and is the intermediate colour between that of earth and water. This can be illustrated by the fact that when the bark of trees dries up it turns black, and the wood inside the tree becomes white, and the green, which comes between these 3° two colours, is the colour presented by the outward appearance of the plant.

The shapes of plants fall under three classes. Some spread upwards, others downwards, while others are intermediate in height between the two. The upward extension is due to the fact that the nutritive material makes its appearance in the marrow of the plant, and the heat draws 35 it up, and the air, which is present in the rarities of the plant, compresses it, and it assumes a pyramidal form, just as fire assumes a pyramidal form in bodies in which it is present and rises upwards. Downward extension is due to the blocking of ducts in the plant, and, when the nutritive material is assimilated, the water, which is in the 40 marrow of the plant, will thicken, and the rarefied portion proceeds on its upward course, while the water returns $828^{\text {a }}$ to its former position in the lower portion of the plant, and by its weight presses the plant downwards. In the plants which are intermediate between the two classes already mentioned, the mosisture is rarefied and the natural state of the plant is very nearly a temperate condition during the process of concoction, and the ducts are open z^{2} through the middle of the plant, and the nutritive material spreads upwards and downwards. There is a double process of concoction ; the first takes place below the plant, while the second takes place in the marrow which comes out of the earth and is in the middle of the plant; afterwards the nutritive materials make their appearance fully matured ${ }^{2}$ and are distributed through the plant, and do not undergo

[^66]H 2
ro a third assimilation. In animals there is a third process of assimilation ; this is due simply to the diversity of their limbs and to the distinctness of their parts from one another. Plants, on the other hand, are more homogeneous and ${ }_{15}$ repeat the same members over and over again, and the nutritive material generally has a downward tendency. The shapes of plants will depend on the character ${ }^{1}$ of the sced, while the flower and fruit is dependent on the water and nutritive material. In all animals the first process 20 of maturation and concoction of the nutritive liquids ${ }^{2}$ takes place within the animal; there is no exception to this rule. But in plants the first concoction and maturation takes place in ${ }^{3}$ the nutritive material. Every tree continues to grow up, until its growth is completed and it dies. The reason is that, while in any animal its height is much 25 the same as its width, in a plant it is far from being so, because water and fire, the elements which compose it, rise quickly, and therefore the plant grows. Variety in the branches of a plant is duc to excessive rarity, and, when the moisture is intercepted there, the process of nature will cause it to grow hot and will hasten the concoction, 30 and thus boughs will form and leaves will appear, as we have already said.

The shedding of leaves from trees will be due to the $\mathbf{9}$ tendency to fall, induced by quickly formed rarity. When the moisture is assimilated with the nutritive material, it will assume a pyramidal form, and therefore the ducts 35 within will be wide and will afterwards become narrow ; ${ }^{4}$ when the nutritive material makes its appearance already assimilated and formed, it will close up the extremities of the ducts above, and the leaves will have no nutritive material, and therefore dry up. When the contrary process

[^67]takes place, as we have said, the leaves do not fall from the trees. When coldness dominates in the plant, it will affect its colour owing to the secretion of heat in the middle of the plant and the presence of cold outside in its extremities ; the result is that the leaves are blue-grey and do not fall, as in the olive, and myrtle, and similar trees. When trees or plants exercise a violent force of attraction, fruit will be 5 produced once a year; when they do not exercise such a force, nature will employ the process of concoction on successive occasions and at each concoction they produce fruit, and so some plants bear fruit several times in the year. Plants which are of the nature of water bear fruit with difficulty on account of the predominance of moisture Io in them, and the wideness of their ducts and the tendency of their roots to fall off; when the heat is intense, the assimilation will be quick and will be rarefied owing to the water and will not solidify ; this we shall find to be the case in all small herbs and in some vegetables.

A grey colour will occur where the ground is exceedingly hot; here there will be little moisture and the ducts will become narrow, and when nature wishes to bring about assimilation it will not have sufficient moisture to supply the nutritive material and the ducts will become narrow. The process of assimilation therefore will be reversed and 20 the heat will cause it to continue, and the plant will be seen to have a colour, intermediate between white and black. When this happens it will have black wood or anything approximating to white and ebony, that is, any of the whole range of colours from that of ebony to that of elm ; ${ }^{1}$ and so such wood sinks in water because its parts are ${ }^{25}$ compact and the ducts in it are narrow, and no air enters into them. When white wood sinks the reason will be the narrowness of the ducts and the presence of superfluous moisture, which blocks up the ducts so that the air does not enter ; consequently it sinks. Every flower is composed 30 only of rarefied material when the assimilation first begins; and so the flower generally precedes the fruit in plants. We have already shown why it is that plants produce their

[^68]leaves before their fruits. In the case of plants which have slender parts the colour of the flower will resemble a bright 35 bluc; when the parts are not closely compressed, it will tend to whiteness; under medium conditions it will be a bluc-grey. The absence of flowers in certain plants is usually due to the variety of their parts and their rarity to or their roughness or thickness. The palm and similar trees therefore have no flowers.
$829^{\text {a }}$ A plant which has thick bark expands owing to the pressure of moisture and the impelling force of heat; we see this in the pine and palm. A plant which gives forth a milky juice will have such juice within it ; there will be s powerful heat within and an oily substance will be present there. When the heat begins to cause assimilation, the oily substance will be turned into moisture, and the heat will solidify it to a slight extent, and local warmth will be caused, and an oily liquid will be produced similar to milk, and vapour will rise from the moisture which attracts 10 the milky substance into the extremities of the plant, and the moisture will retain the heat ${ }^{\mathbf{1}}$ which appears. The milky substance will not be solidified, because it is the function of heat to solidify it. ${ }^{2}$ If the milky substance shows any considerable degree of solidification, it will be due to the presence of cold in the tree. The milky substance will solidify when it has left its original position in the tree, i_{5} and the result will be the formation of gum. Gum comes out warm from the tree by distillation, and, when it comes into contact with the air, it will solidify. Some gums flow in temperate places, and these will be of the consistency of water; others flow out and solidify as hard as stone or shell. Gum which flows drop by drop keeps its form, 20 as in the tree which is known as.aletafur. ${ }^{3}$ The gum which changes into a stony substance will be very cold on its first appearance, and its appearance will be caused by heat, and when it flows it will turn to stone ; it will occur where the soil is very hot. Some trees undergo a change in the 25 winter and will become sometimes green and sometimes

[^69]blue-grey, and neither their leaves nor their fruits decay; for trees in which this occurs have a great quantity of heat and rarefied water in their lower reservoirs. ${ }^{1}$ Thus as the year goes on this water will retain its heat on account of 30 the coldness of the air ; and because the heat goes out to the cold, it carries the moisture out with it, and the moisture tinctures it with the natural colour of heat, and therefore the colour is seen in the appearance of the tree. Consequently cold and heat are converted into activity, and the moisture retains heat, and therefore another colour makes its appearance.
io Fruit will be bitter because the heat and moisture have not completed the process of assimilation (cold and dryness hindering the completion of this process), and so fruit turns bitter. This can be illustrated by the fact that what is bitter, when put into fire, becomes sweet. Trees which 40 grow in sour water produce sweet fruit, because the sourness $829{ }^{\text {b }}$ assisted by the heat of the sun attracts that which is of its own quality, namely, cold and dryness. Sweet liquids therefore make their appearance inside the tree, and the innermost part of the tree becomes hot when the sun shines continuously above it, and the flavour of the fruit will be : successively sour, and then, when the process of assimilation has taken place, the sourness will be gradually dissolved until it disappears, and sweetness will make its appearance. Consequently the fruit will be sweet, while the leaves and extremities of the tree will be acid. When the maturation is complete, the fruit will be bitter: this is due to a superfluity io of heat with very little moisture. The moisture is used up and the fruit makes the heat rise, and so the fruit will be bitter, and the stones in the fruit will be pyramidal in form on account of the upward attraction of the heat and the downward attraction of the cold and moisture which are of 15 the same nature as sour water; and the moisture remains in the trunk of the tree, which consequently thickens, while its extremities are thin. If trees are planted in temperate soil, they reach maturity quickly before the days

[^70]of spring, because, when the heat is almost temperate and ${ }_{20}$ the moisture has made its appearance and the air is clear, the fruit will not require much heat during the process of assimilation. Consequently maturity comes quickly and takes place before the days of spring. Bitterness or harshness of flavour is prevalent in all trees when they are first planted. The reason is that when the moisture is in their ${ }_{25}$ extremities and has caused assimilation in the parts that are in the middle of the tree, from which the material of the fruit comes, the dryness comes forth and follows the moisture, and the first assimilation will be sour or bitter or harsh. The reason is that the assimilation takes place in the heat 30 and moisture, and when moisture or dryness prevails over the heat, the fruit so produced will not at first have undergone complete assimilation, and consequently the production of fruit is at first without sweetness.

Bennut-trees ${ }^{\mathbf{1}}$ at first when the fruit appears are sweet, and subsequently become harsh in flavour and finally bitter. 35 The reason of this is that the tree has excessive rarity in it, and at the time of assimilation, when the ducts are wide, the heat will follow the moisture and will cause the fruit to mature; consequently the fruit will be sweet at first. Subsequently the heat attracts the dryness which resembles its own nature, and will cause the ducts to contract, and 40 cold and dryness will prevail over heat and moisture ; the fruit, therefore, will change to a harsh flavour. Next, the 830° sun with its heat will prevail through the attraction of superfluous ${ }^{2}$ moisture in the seed, which is present at the first appearance of the tree, and the cold will prevail over the dryness ; the fruit will therefore become exceedingly
830° harsh in flavour. Next, the natural heat will rise upwards, and the heat of the sun outside will assist it ; therefore the heat and dryness will prevail, and the fruit will become bitter.

Here ends the book on Plants.

[^71]
DE MIRABILIBUS

AUSCULTATIONIBUS

BY
LAUNCELOT D. DOWDALL, B.D., LL.B.

OXFORD
AT THE CLARENDON PRESS
1909

HENRY FROWDE, M.A.
PUBLISHER TO THE UNIVERSITY OF OXFORD
LONDON, EDINBURGH, NEW YORK
TORONTO AND MELBOURNE

PREFACE

In the following translation I have followed in the main the text of Apelt (Teubner, 189^{8}) which rests on the recension of Bekker, while the Laurentian MS. (S^{a}) is closely followed, with a few exceptions. Very different from this is the text of Beckmann (Gottingen, 1786) ; but his learned notes have been useful. I must acknowledge my obligations also to the Latin version in Bussemaker's edition (Didot. 1878), and to the German rendering of Schnitzer (Stuttgart, 1860). My thanks are due to Mr. Kenyon of the British Museum for kindly transcribing for me Hermann's emendation (ch. I33) before Apelt's edition came to my hand. Many valuable suggestions are due to the kindness of Mr. W. D. Ross, Fellow of Oriel College, Oxford.

> L. D. D.

Hove.
June 30, 1909.

The De Mirabilibus Auscultationibus, though undoubtedly not written by Aristotle, has been included in this series from a wish to omit, as nearly as possible, no part of the corpus associated with Aristotle's name and printed in the standard editions of his works. Much of the book is at least of Peripatetic origin.
W. D. R.

OXFORD.
October 21, 1909.

DE MIRABILIBUS AUSCLLTATIONIBUS

CONTENTS

CHAP.
I. The Bison.
2. The Piety of Camels.
3. The Cuckoo.
4. Cretan Goats.
5. Achaean Stags.
6. Leopard's Bane.
7. The Sandpiper.
8. The Hedgehog.
9. Cephallenian Goats.
10. Wild Asses.
II. The Tortoise.
12. Martens.
13. The Woodpecker.
14. The Pelican.
15. Blackbirds.
16. Flower-honey.
17. Cappadocian Honey.
18. Box-honey.
19. Tree-honey.
20. Bees' Food.

2I. Bees.
22. Honey-wine.
23. Thessalian Serpents.
24. Laconian Serpents.
25. Mice.
26. Mice and Gold.
27. Scorpions.
28. Mice of Cyrene.
29. A Marvellous Whirlpool.
30. The Elk (Tarandos).
31. The Madman of Abydos.
32. Nocturnal Madness.
33. Fire-mixture and Fire-stone.
34. The Island of Lipara.
35. Fires in Media and Persia.
36. Fire in Atitania.
37. Volcanoes.
38. Fire in Lipara: Eruptions of Etna.
39. Fire in Lydia.
40. Fire-streams in Sicily.
41. Fire-stone (Spinos).
42. Mines in Macedonia.
43. Copper in Cyprus.

CHAP.

44. The Island of Melos.
45. Paeonian Gold.
46. Gold of the Oxus.
47. Pierian Gold.
48. Chalybian Iron.
49. Indian Copper.
50. Celtic Tin.

5I. The Pantheon Olive.
52. What happened in the Mines of Pergamos.
53. The Ascanian Lake.
54. The Wells of Pythopolis.
55. The Sicilian Strait.
56. The Spring near Syracuse.
57. The Spring of Palici.
58. The Copper of Demonesus.
59. The Cave of Demonesus.
60. Concerning Eagles.

6I. Indian Lead.
62. The Copper of the Mossynoeci.
63. Hibernating Birds and Fish.
64. Bees and Grasshoppers.
65. The Hedgehog.
66. Jealousy of the Spotted Lizard.
67. Bears' Fat.
68. Dumb Frogs and Solid-hoofed Swine.
69. Fruitful Mules.
70. Frogs of Seriphos.
71. Wandering Fish.
72. Fish on Dry Land.
73. Fish obtained by Digging.
74. Paphlagonian Fish.
75. The Stag's Horn.
76. The Lynx.
77. The Sea-calf.
78. Circaean Poison.
79. The Birds of Diomedes.
80. Fruitfulness of Umbria.
81. The Amber Islands.

S2. Flowers and Wheat of Sicily.
83. Crete without Wild Beasts.
84. Island of the Carthaginians.
85. Road of Heracles.

CHAP.
86. Celtic Poison.
87. Silver in Iberia.
88. The Balearic Islands (Gymnesiae)
89. The Massilian Lake.
90. Ligurian Slingers.
91. Ligurian Women.
92. The Ligurian River.
93. The Mine of Aethaleia.
94. The City of Oenarea.
95. Cumaean Sibyl and River Cetus.
96. The Mantle of Alcimenes.
97. Iapygia and Heracles.
98. The Iapygian Stone.
99. The Orchomenian Cave.
100. Sardinia and Aristaeus.

10I. Noises at Lipara. The Wonderful Cave.
102. Lake Avernus.
103. The Siren Islands.
104. Mount Delphium.
105. The Danube. Voyage of the Argonauts.
106. Sacrifices to the Dead at Tarentum.
107. Philoctetes and Tlepolemus.
108. The Tools of Epeus.
109. Daunia and the Arms of Diomedes.
iio. Legend of the Bronze Necklace.
III. Sicilian Crocus.
112. The Miraculous Lake in Sicily.
II3. The Fragrant Mountain and Oil-spring.
114. The Burning Spring.
115. Burning Stones.
116. Thracian Barley.
117. The Healing Fountain.
118. Falconry.

IIg. Venetian Jackdaws.
120. The Beetles' Death.
121. The Fatal Spring.
122. Hares' Livers. Place of Death. Temple of Dionysus.
123. The Miracle of Dionysus. Kites.
124. Moles.
125. Amphibious Mice.
126. The Crows of Crannon.
127. Bitumen of Apollonia. Burning Ground.

CHAP.
128. Illyrian Cattle.
129. Paeonian Wild Oxen.
130. The Sicilian Strait.
131. The Tomb of Deïope.
132. Palm-island.
133. The Old Inscription.
134. Salt obtained by Digging.

I35. Spanish Silver.
136. Deserts beyond Gades. Shoals of Tunnies.
137. The Pedasaean Goat.
138. Illyrian Salt.
139. The Scorpion-Fighter.
140. Naxian Wasps.
141. Scythian Poison.
142. The Cyprian Snake.
143. The Wild Pear of Ceos.
144. White Bears.
145. The Hyaena.
146. The Lion-Killer.
147. Vultures and Beetles.
148. The Lizards' Bite.
149. Mesopotamian Snakes.
150. Snakes of the Euphrates.
151. The Sacred Snake.

I 52. The Sacred Water of Tyana.
153. The Sacred Olive.
154. The Race of the Pious.
155. The Contrivance of Phidias.
156. The Statue of Bitys.
157. The Black Mountains.

I 58. The White-leaved Rod.
159. The Stone called 'Modon'.
160. The Plant called 'Sistros'.
161. The Mad Vine.
162. The Cylindrical Stone.
163. The Love-Plant.
164. Putrefaction-Serpents (Sepes).
165. The Dark Adder and the Viper.
166. The Nile-Stone.
167. The Sound-minded Stone (Sophron).
168. The Rhine and Danube.
169. The Sybaris and Crathis.
170. The Wool-dyeing Rivers.
171. The Lance-Herb.
172. The Fountain Arethusa.
173. The Stone of Madness.
174. The Changing Stone.
175. The Golden Bull of Artemis.
176. Aetolian Moles.
177. Pregnancy of Elephants.
178. Pleasant Madness.

DE MIRABILIBUS AUSCULTATIONIBUS

DE MIRABILIBUS AUSCULTATIONIBUS

I Men say that in Paeonia, on the mountain called $830^{\text {a }}$ Hesaenus, which forms the boundary between the Paeonian 5 and Maedian ${ }^{1}$ districts, there is found a wild beast, which is called Bolinthos, ${ }^{2}$ but by the Paeonians is named Monaepos. They state that this in its general nature is similar to the ox, but surpasses it in size and strength, and moreover is distinguished from it by its mane ; for like the horse it has ro a mane hanging down very thick from the neck, and from the crown of the head as far as the eyes. It has horns, not such as oxen have, but bent downwards, the tip being low down near the ears ; and these severally contain more than three pints, and are very black, and shine as though ${ }^{15}$ they were peeled; ${ }^{3}$ and when the hide is stripped off it occupies a space capable of containing eight couches. When the animal is struck with a weapon it flees, and only stops when it is quite exhausted. Its flesh has an agreeable taste. It defends itself by kicking, and voiding excrement over a distance of about twenty-four feet. It easily and frequently employs this kind of defence, and the ${ }^{20}$ excretion burns so severely that the hair of the dogs is scraped off. They say, however, that the excrement produces this effect only when the animal is disturbed, but when it is undisturbed it does not burn. When they bring forth young, assembling in larger numbers and being all gathered closely together, the full-grown ones bring forth, and void excrement as a defence round their young ; for the animal discharges a large quantity of this excretion.
2 In Arabia aiunt camelos non inire matres suas; sed $830^{\text {b }}$ etiamsi quis cogat, nolunt; namque curatorem admissario aliquando destitutum operto ${ }^{4}$ matrem submisisse ferunt pullo. Is ${ }^{5}$ vero coitum tunc quidem, ut videtur, absolvit; paulo tamen post armentarium morsibus necavit.

${ }^{2}$ Bison, or wild ox, probably the same as the Bonasos.
${ }^{\text {s }}$ Gesner conj. $\lambda_{\epsilon \lambda \iota \pi а \sigma \mu \epsilon ́ \nu a . ~ C f . ~ H i s t . ~ A n . ~ i x . ~}^{25 .}$
${ }^{4}$ al. opertam. Cf. Hist. An. ix. 47 ; Ovid, Met. x. 324.

Men say that the cuckoos in Helice, when about to 3 breed, do not build a nest, but lay their eggs in the nests of ring-doves or turtle-doves, and neither sit on their eggs, nor hatch them, nor rear their young ; but when the chick ${ }^{5} 5$ is born and reared, it expels its companions from the nest. Moreover, it appears, it grows large and beautiful, so that it easily overcomes the rest. They say that the ring-doves also take such a delight in it that they even assist it to drive out their own young.

20 The she-goats in Crete, when they are shot with arrows, 4 seek, it would appear, for the dittany, which grows there; for as soon as they have eaten it, they straightway expel the arrows from their bodies.

Men say that some of the stags in Achaea, when they 5 have shed their horns, proceed to places of such a kind that
$83 \mathrm{r}^{\mathrm{a}}$ they cannot be easily found ; and that they act in this way because they have no means of defence, and also because the parts from which they have shed their horns give them pain ; and it is stated that, in the case of many of these animals, ivy is seen growing in the place of the horns.

Men say that in Armenia a certain poison grows, which 6 is called leopard's bane. So, when a leopard is scen, they anoint a victim with this, and let it go. When the leopard 5 touches it, she goes, it would appear, in quest of human excrement. Therefore the hunters put it in a vessel, and suspend it from a tree, so that the leopard, by leaping up towards it and becoming exhausted, may be paralysed by 10 it , and fall into their power.

Men say that in Egypt the sandpipers fly into the mouths 7 of the crocodiles, and cleanse their teeth, pulling out the pieces of flesh, which stick in their snouts, while the crocodiles are pleased, and do them no harm.
r5 Men say that the hedgehogs in Byzantium perceive when 8 north or south winds are blowing, and immediately change their holes ; and, when the winds are southerly, make their holes opening out of the ground, but, when they are northerly, out of the walls.

9 The she-goats in Cephallenia do not drink, as it appears, 20 like other quadrupeds ; but daily turning their faces towards the sea, open their mouths, and take in the breezes.

10 In Syria inquiunt inter silvestres asinos ${ }^{1}$ unum praeire armento, atque si iunior aliquis pullus feminam conscenderit, ducem indignari, et hunc tantisper persequi, dum comprehendat ac in crura posteriora conquiniscens ore verenda ${ }_{25}$ evellat.
II Men say that tortoises, when they have eaten part of a viper, eat marjoram as an antidote, and, if the creature fails to find it at once, it dies; that many of the countryfolk, wishing to prove whether this is true, whenever they see it acting in this manner, pluck up the marjoram, and 30 when they have done so, the tortoise is presently seen dying.
12 Viverrae aiunt genitalia esse reliquorum animalium na- $831^{\text {b }}$ turae absimilia, dum ipsis, quomodocumque demum affectis, semper sint instar ossium solida. Singulare urinae stillicidio laborantibus remedium esse perhibent rasaque exhiberi.
13 Men say that the bird called the woodpecker climbs ${ }_{5}$ upon the trees like lizards, both hanging from and standing on the branches, It is further stated that it feeds upon the grubs out of the trees, and digs so deeply into the trees, in its search for the grubs, that it even brings the trees down.
14 Men say that the pelicans dig up the mussels that are ro found in the rivers, and swallow them ; then, when they have devoured a large quantity of these, they vomit them up again, and thereupon eat the meat of the mussels, but do not touch the shells.
15 Men say that in Cyllene in Arcadia the blackbirds are born white, which happens nowhere else, and that they 15 give utterance to various sounds, and go forth by the light of the moon ; but that, if any one should attempt to capture them by day, they are caught with great difficulty.

[^72]It is stated by certain persons that what is called flower- 16 20 honey is produced in Melos and Knidos, and that, while fragrant in smell, it lasts for only a short time ; and that in it ${ }^{1}$ bee-bread is produced.

In some parts of Cappadocia they say that the honey is $\mathbf{1 7}$ made without a honey-comb, and that in consistency it resembles olive-oil.

At Trapezus in Pontus the honey gathered from the $\mathbf{I} 8$ box-tree is produced, having an oppressive smell, and they ${ }_{25}$ say that this drives out of their senses those who are sound in mind, while it completely cures those who suffer from epilepsy.

Men say that in Lydia also the honey is gathered from 19 the trees in abundance, and that the inhabitants form out of it balls without wax, and cutting off portions by 3_{0} very violent rubbing ${ }^{2}$ make use of it. It is produced indeed in Thrace likewise, not so solid, but as it were of a sandy nature. They say that all honey when congealed preserves $832^{\text {a }}$ an equal volume, not like water and all other liquids.

The grass of Chalcis and almonds are most useful for 20 making honey; for they say that a very large quantity is produced by them.

People say that bees are stupefied by unguents, and are $\mathbf{2 I}$ unable to endure the smell of them ; while some say that ${ }_{5}$ they especially sting those who have been anointed.

They say that among the Illyrians those who are called $\mathbf{2 2}$ Taulantians make wine out of honey. When they have squeezed out the honey-combs, they pour water on the honey, and boil it in a caldron until half is consumed; then they pour it out into earthen jars, fill them half ${ }^{3}$ full, and lay them on boards; and on these they say it ferments for 10 a long time, and becomes like wine, while for the rest it is sweet and strong. But now they state that this mode of preparation was adopted also among some of the inhabitants of Greece, so that the drink did not differ from

[^73]old wine, and that in later times, when they inquired into the method of mixing it, they were unable to discover it.
23 They relate that in Thessaly once upon a time so large a number of serpents was bred alive that, if they had not 15 been exterminated by the storks, the inhabitants would have left the country. Wherefore they also honour the storks, and it is unlawful to kill them, and, if any one kills them, he becomes liable to the same penalties as a homicide.

24 Likewise also it is related that there was once in Lacedaemon so great a multitude of serpents that the 20 Lacedaemonians, owing to a scarcity of corn, used them as food; whence also they say that the Pythian priestess called them 'serpent-necked '.'

25 It is said that in the island of Gyaros ${ }^{2}$ the mice eat iron.
26 Men say that among the Chalybians, in an islet situated beyond them, gold is collected by mice in large numbers : wherefore also, as it appears, they rip up those that are 2_{5} found in the mines.

27 It is said that travellers going from Susa to Media meet with an immense multitude of scorpions at the second stage. So the King of the Persians, whenever he was passing through the place, remained there for three days, ordering all his men to hunt them down; and he gave a prize to him 30 who caught the greatest number.
28 Men say that in Cyrene there is not merely one sort $832^{\text {b }}$ of mice, but several kinds differing both in forms and in colours; for some are broad-faced, like mustelae, ${ }^{3}$ and some like hedgehogs, which they call ' echines'.

29 In Cilicia they say that there is a whirlpool, in which birds, and animals besides, that have been suffocated, when ${ }_{5}$ immersed come to life again.

[^74]Among the Scythians who are called Geloni, they say 30 that there is a certain wild animal, excessively rare indeed, ro which is named Tarandos. ${ }^{1}$ Now this is said to change the colour of its hair, according to the place in which it may be ; and for this reason it is hard to catch; for it becomes in colour like to trees and places, and its surroundings generally. But the most wonderful thing is its changing its hair; for other animals change the colour ${ }_{15}$ of the skin, such as the chameleon and polypus. In size it resembles an ox, while the form of its face is like that of a stag.

It is said that a certain man in Abydos being deranged 3I in mind, and coming into the theatre during many days 20 looked on (as though actors were performing a play), and applauded; and, when he was restored to his senses, he declared that that was the happiest time he had ever spent.

Moreover they say that at Tarentum a certain wine- 32 merchant was mad at night, but sold his wines during the day: he also kept the key of the cellar attached to his 25 girdle, and though many tried to steal it from him and get possession of it, he never lost it.

In the island of Tenos they say there is a small bowl 33 containing a mixture, from which people kindle fire very readily. Moreover in the Thracian Bithynia ${ }^{2}$ there is found in the mines the stone which is called 'spinos', ${ }^{3}$ 30 from which they say that fire is kindled.

People say that in the island of Lipara there is a certain ${ }^{4} 34$ place where the air is sucked down into the earth, and that if they bury a pot there they can put therein whatever they please and boil it.
$833^{\text {a }}$ Both in Media and in Psittacene, a district of Persia, 35 there are fires burning, that in Media small, but that in Psittacene large and with a bright flame; for which reason also the King of the Persians constructed kitchens near it.

[^75]Both these are in level, not in elevated places. These fires 5 are conspicuous both by night and by day, while those in Pamphylia are seen only at night.
36 They say also that at Atitania, near the borders of the district of Apollonia, there is a certain rock, and fire rising from it is not visible, but whenever oil is poured thereon blazes up.
37 It is said that the places outside the Pillars of Hercules io burn, some constantly, others at night only, as Hanno's Circumnavigation relates. The fire also in Lipara is visible and flaming, yet not by day, but only at night. They say also that in Pithecusae the ground is fiery, and extraordi- 1_{5} narily hot, yet not burning.

38 Xenophanes states that the fire in Lipara once failed for sixteen years, but returned in the seventeenth year. They say that the lava-stream in Etna is neither flaming nor continuous, but returns only after an interval of many years.

39 It is said that in Lydia a vast amount of fire blazed up, 20 and continued burning for seven days.

40 The lava-stream in Sicily is an extraordinary phenomenon. The breadth of the fire that blazes up amounts to forty stadia, while the height to which it is carried amounts to three.

4 I They say that the stone in Thrace which is called 25 'spinos' burns when split in two, and that it also, like charcoal-embers, when put together again, and sprinkled with water, burns; and that the stone called 'marieus ${ }^{1}$ ' does the same.

42 At Philippi in Macedonia they state that there are mines, the refuse from which, they say, increases and pro- 30 duces gold, and that this is an observable fact.

[^76]They say that in Cyprus, at the place called Tyrrhias, ${ }^{1} 43$ copper is produced in like manner; for men having cut it up, as it appears, into small pieces, sow it, and then, when the rains have come on, it grows and springs up, and so is collected.

They say that in the island of Melos, in those parts of 44 5 the ground that are dug up, the earth fills itself up again.

In Paeonia they state that when continuous showers have 45 fallen, and the ground is thoroughly soaked, there is found what is called gold without fire. ${ }^{2}$ They state, too, that in Paeonia the ground is so rich in gold that many persons ro have found gold even exceeding a pound in weight. And they say that certain persons, who had found them, brought two nuggets to the king, one weighing three pounds, the other five ; and they say that these are set beside him on the table, and, if he eats anything, he first offers a libation upon them.
${ }^{15}$ They say that among the Bactrians also the river Oxus 46 carries down numerous small nuggets of gold, and moreover that in Iberia the river called Theodorus " both throws out much gold on its banks, and likewise also carries it down the stream.

They state also that in Pieria, a district of Macedonia, 47 20 some uncoined gold was buried by the ancient kings, and, while there were four cavities, from one of them gold grew up a span in length.

It is said that the production of the Chalybian and 48 Amisenian ${ }^{4}$ iron is very peculiar; for it grows together, as at least they assert, from the sand that is carried down 25 by the rivers. Some say that they simply wash this, and smelt it in a furnace ; but others that, after frequently washing the dcposit left by the first washing, they burn it, and inscrt what is called the fire-proof stone which is abundant in the country. This iron is far more beautiful than the 30 other kinds. But if it were not burnt in the furnace it

[^77]would not at all differ, as it appears, from silver. Now they say that it alone is not liable to rust, but that it is not very plentiful.
49 They say also that among the Indians the copper is so bright, pure, and free from rust that it cannot be distinguished in colour from gold; moreover that among the cups of Darius there are certain goblets, and these not 5 inconsiderable in number, as to which, except by their smell, one could not otherwise decide whether they are of copper or gold.
50 They say that the Celtic tin melts much more quickly than lead. A proof of its fusibility is that it is believed to melt even in water : at any rate, it seems, it stains quickly. Now it melts in the cold ${ }^{1}$ also, when the weather is frosty, io because, as they say, the hot substance inherent in it is by reason of its weakness shut up and compressed within.
5I In the Pantheon ${ }^{2}$ there is an olive-tree, which is called that ' of the beautiful crowns'. But all its leaves are contrary in appearance to those of other olive-trees ; for it ${ }^{3}$ has the pale-green outside, instead of inside, and it sends ${ }^{15}$ forth branches, like those of the myrtle, suitable for crowns. From this Heracles took a shoot, and planted it at Olympia, and from it are taken the crowns which are given to the combatants. This tree is near the river Ilissus, sixty ${ }^{4}$ stadia distant from the river. It is surrounded by a wall, and a severe penalty is imposed on 20 any one who touches it. From this the Eleians took the shoot, and planted it in Olympia, and from it they took the crowns which they bestowed.
52 In the Lydian mines near Pergamos, which also Crocsus had worked, the following incident occurred. When a certain war arose the workmen fled to them; but, as the 25 mouth was built up, they were suffocated; and a long time afterwards, when the mines were cleared out, vessels, which they used to employ for daily uses, such as jars

[^78]30 and the like，were found petrified．These，being filled with whatever liquid it might be，had been turned to stone， as well as the bones of the men．

In the Ascanian lake the water is so impregnated with $\mathbf{5 3}$ soda that garments have need of no other cleansing sub－ stance ；if one leaves them too long in the water they fall to pieces．

Near the Ascanian lake is Pythopolis，a village about 54 35 one hundred and twenty stadia distant from Cius，in which all the wells are dried up in the winter，so that one cannot dip a pitcher into them；but in the summer they are filled up to the brim．

The strait between Sicily and Italy increases and dimin－ 55 ishes along with the changes of the moon．
5 is in a meadow a spring，neither large nor containing much water ；but，when once a great crowd met at the place， it supplied water in abundance．

There is also a certain spring in Palici ${ }^{1}$ in Sicily，about 57 as large as the space ten couches would occupy．This throws up water to the height of six cubits，so that it Io is thought by those who see it that the plain will be inundated；and again it returns to its original state． There is also a form of oath，which is considered to be sacred there；whatever oaths a man swears he writes on a little tablet，and throws into the water．If therefore he swears truly，the tablet floats on the top；but if he ${ }_{15}$ swears falsely，they say that the tablet grows heavy and dis－ appears，while the man is burnt．Wherefore the priest takes security from him that some one shall purify the temple．

Demonesus，the island of the Chalcedonians，received 58 20 its name from Demonesus，who first cultivated it．The place contains the mine of cyanos and gold－solder．Of this latter the finest sort is worth its weight in gold，for it is also a remedy for the eyes．In the same place there

[^79]is also copper, obtained by divers, two fathoms below the surface of the sea, from which was made the statue in Sicyon in the ancient temple of Apollo, and in Pheneus the so-called statues of mountain-copper. On these is the ${ }_{25}$ inscription-'Heracles, son of Amphitryon, having captured Elis, dedicated them'. Now he captured Elis guided, in accordance with an oracle, by a woman, whose father, Augeas, he had slain. Those who dig the copper become very sharp-sighted, and those who have no eyelashes grow them: wherefore also physicians use the 30 flower of copper ${ }^{1}$ and Phrygian ashes for the eyes.
59 Now in the same place there is a cave which is called the pretty ${ }^{2}$ cave. In this pillars have been formed by congelation from certain drippings of water: and this becomes evident from their being contracted ${ }^{3}$ towards the ground, for the narrowest ${ }^{4}$ part is there. ${ }^{5}$
60 Of the offspring of a pair of eagles, so long as they pair 35 together, every second one is a sea-eagle. Now from the $835^{\text {a }}$ sea-eagles springs an osprey, and from these black eagles and vultures: yet these on the other hand do not bring 5 the breed of vultures to a close, but produce the great vultures, and these are barren. And a proof is this, that no one has ever seen a nest of a great vulture.
6I A wonderful thing they say happens among the Indians with regard to the lead there ; for when it has been melted and poured into cold water it jumps out of the water.
62 Men say that the copper of the Mossynoeci is very brilliant and white, no tin being mixed with it ; but there 10 is a kind of earth there, which is smelted with it. ${ }^{6}$ They state that the man who discovered the mixture did not inform any one; so the copper vessels formerly produced in these parts were excellent, but those subsequently made were no longer so.
63 Men state that in Pontus some birds during the winter I_{5}
${ }^{1}$ Capillary red copper-ore.
${ }^{2}$ Or hollowed: cf. Hom. Od. ix. II4 ध่ $\boldsymbol{\sigma \pi \epsilon ́ \sigma \sigma t ~ \gamma \lambda a \phi u p o i ̂ \sigma \iota . ~}$
${ }^{3}$ Weise reads àvayต́үฑ. ${ }^{4}$ Weise $\sigma \tau \epsilon \gamma \nu o ́ \tau a \tau o \nu . ~$
${ }^{5}$ єiฮi . . . бтєขต́татаı has been suggested.
${ }^{6}$ This seems to have been cadmia, and the mixture what is called Prince Rupert's metal, or white copper. The Mossynoeci lived on the southern shores of the Black Sea, and derived their name from the wooden towers (μ ó $\sigma \sigma v \nu$) in which they dwelt. Cf. Xen. Anab.v. 4. 26.
are found lurking in holes, and not ${ }^{1}$ discharging excrement, and when people pluck out their feathers they do not feel it, nor yet when they are pierced on a spit, but only when they have been burnt through with fire. They say that 20 many fishes also, when trimmed and cut round, have no perception of it, but only when they have been warmed through by fire.

The bee is thought to announce the solstices by going 64 to its labours, which the bee-keepers also use as a sign, 25 for then they have rest. The grasshoppers also appear to chirp only after the solstices.

They say also that the hedgehog continues without food 65 for a year.

It is said that the spotted lizard, when it has stripped 66 off its slough, like snakes, turns round and swallows it, because physicians look out for it, from its being serviceable to those who suffer from epilepsy.
30 Men state also that the fat of the bear, when it has 67 been congealed owing to the winter, increases as long as the bear lies hidden in its den, and overflows the vessels in which it is kept.

They say that the frogs in Cyrene are altogether dumb, 68 and that in Macedonia, in the country of the Emathiotae, 35 the swine have solid hoofs.
$835^{\text {b }}$ They say that in Cappadocia there are mules possessed 69 of generative powers, and in Crete black poplars which yield fruit.

They say also that in Seriphos the frogs do not croak; 70 but if they are transferred to another place they croak.
5. Among the Indians, in what is called the Horn, it is $\mathbf{7 I}$ stated that there are little fishes, which wander about on the dry land, and run away again into the river.

Some say also that in the neighbourhood of Babylon 72 certain fishes remain in the holes, which contain moisture, while the river is drying up; that they go out to the 10 threshing-floors and feed, and walk upon their fins, and

[^80]move the tail to and fro, and when they are pursued they flee, enter into their holes, and stand facing their pursuer; for people often approach and tease them. Their head is like that of the sea-frog, while the rest of the body resembles that of the gudgeon, and they have gills like other fishes.
73 At Heraclea in Pontus, and in Rhegium, they say there r_{5} are fish obtained by digging, especially in places near rivers, and such as are well watered; and that it sometimes happens that when these places dry up at certain seasons, the fish shrink under the earth, and then when this dries up still more, they, in search of humidity, enter into the 20 mud; then when this becomes dry, they remain in the moisture, like animals which continue in their holes ; but, when they are dug up before the waters come on, they then move.
74 They say also that in Paphlagonia the fish obtained by digging are met with deep in the ground, and that these ${ }_{25}$ are of an excellent quality, though neither is water to be seen close at hand, nor do rivers flow into the place ; the earth engenders them of itself.
75 Men say that the stags in Epirus bury their right horn, when they have shed it, and that this is useful for many purposes.
They say that the lynx too covers up its urine, because 30 of its being useful for signet-rings as well as for other things.
77 They also state that the sea-calf, when taken, vomits out rennet, and that this is medicinal and serviceable to those who suffer from epilepsy.
78 It is said that on the Circaean mountain in Italy there 35 grows a deadly poison, which is so potent that, if it be $836^{\text {a }}$ sprinkled on any one, it straightway causes him to fall, and the hairs of his body to drop off, and generally the limbs of his body to waste away, so that the surface of the body of those who are dying is a pitiable sight. They say too that Aulus the Peucestian and Gaius were detected when about to administer this poison to Cleonymus 5
the Spartan, and that having been examined they were put to death by the Tarentines.

In the island of Diomedeia, which lies in the Adriatic, 79 they say there is a temple of Diomedes, wonderful and holy, and round the temple there sit in a circle birds of 10 a large size, having great hard beaks. These birds, they state, if Greeks land at the place, keep quiet ; but if any of the barbarians who live around them approach, they fly up, and soaring in the air swoop down upon their heads, and, wounding them with their beaks, kill them. The ${ }^{15}$ story goes that the companions of Diomedes were metamorphosed ${ }^{1}$ into these, when they had been shipwrecked off the island and Diomedes was treacherously slain by Aeneas, who was then king of those regions.
20 Among the Umbrians they say that the cattle bring 80 forth young three times in the year, and that the earth yields many times more fruit than the seed that is sown: that the women also are prolific, and rarely bring forth only one child at a time, but most of them have two or three.
25 In the Amber islands, which are situated in the corner 81 of the Adriatic, they say that there are two statues erected, the one of tin, the other of bronze, wrought after the ancient fashion. It is stated that these are works of Daedalus, a memorial of old times, when he, fleeing before 30 Minos from Sicily and Crete, put in to these places. But they say that the river Eridanus ${ }^{2}$ formed these islands by alluvial deposit. Moreover, as it appears, there is near the river a lake, containing hot water, and a smell exhales from it heavy and unpleasant, and neither does any animal drink from it, nor does a bird fly over it, but falls and dies.
$836^{\text {b }}$ It has a circumference of two hundred stadia, a width of about ten. Now the inhabitants tell the story that Phaethon, when struck by the thunderbolt, fell into this lake; and that therein are many black poplars, from which falls 5 what is called amber. ${ }^{3}$ This, they say, resembles gum, and

[^81]hardens like a stone, and, when collected by the inhabitants, is carried over to the Greeks. To these islands, therefore, they state that Daedalus came, and, having obtained possession of them, dedicated in one of them his own statue, and in the other that of his son Icarus; but that ıo afterwards, when the Pelasgians, who had been expelled from Argos, sailed against them, Daedalus fled, and arrived at the island of Icarus.
82 In Sicily, in the neighbourhood of the place called Enna, ${ }^{1}$ there is said to be a cave, round about which ${ }_{15}$ they assert that there not only grows a quantity of other kinds of flowers at every season of the year, but that especially an immense space is covered with violets, which fill the adjoining country with fragrance, so that the huntsmen are unable to track the hares, as their dogs are overcome by the smell. Through this chasm there is an invisible subterranean passage, by which they say Pluto 20 carried off Proserpine. In this place it is said that wheat is found, resembling neither the native sorts, which people use, nor other kinds that are imported, but possessed of a great peculiarity. And this they use as an argument to 25 prove that the wheat-fruit appeared first among themselves; whence also they lay claim to Demeter, affirming that the goddess was born amongst them.
83 In Crete men say that there are no wolves, bears, and vipers, and similarly no wild beasts like them, because Zeus was born therein.
84 In the sea outside the Pillars of Hercules they say that 30 an island was discovered by the Carthaginians, desolate, having wood of every kind, and navigable rivers, and admirable for its fruits besides, but distant several days' voyage from them. But, when the Carthaginians often 837^{a} came to this island because of its fertility, and some even dwelt there, the magistrates of the Carthaginians gave notice that they would punish with death those who should sail to it, and destroyed all the inhabitants, lest they should 5
 $\lambda a \gamma \mu a ́ \tau \iota$.

spread a report about it, or a large number might gather together to the island in their time, ${ }^{1}$ get possession of the authority, and destroy the prosperity of the Carthaginians.

From Italy as far as the country of the Celts, Celto- 85 ligurians, and Iberians, they say there is a certain road, io called the 'road of Heracles', by which whether a Greek or a native travels, he is watched by the neighbouring tribes, so that he may receive no injury; for those amongst whom the injury has been done must pay the penalty.

They say that among the Celts there is a poison called 86 by them 'arrow-poison', which they assert produces corruption so quickly that the Celtic huntsmen, when they ${ }^{15}$ have shot a stag, or any other animal, run up to it in haste, and cut out the wounded part of the flesh, before the poison spreads, as well for the sake of the food as to prevent the animal from putrefying. They say, however, that the bark of the oak was found to be an antidote for this ; but others maintain that the antidote is something 20 different, a leaf, which they call ravenswort, ${ }^{2}$ because .a raven, which had tasted the poison, and become sick, was observed by them to hasten for this leaf, and, after devouring it, to be delivered from its pain.

In Iberia they say that, when the coppices were set on
25 fire by certain shepherds, and the earth was heated by the wood, the country visibly flowed with silver; and when, after some time, earthquakes succeeded, and the ground in different places burst asunder, a large quantity of silver was collected, which brought in no ordinary revenue to the Massilians.

In the islands called Gymnesiae, ${ }^{3}$ that lie off the coast 88 of Iberia, which they assert to be the largest, after the socalled seven ${ }^{4}$ islands, they say that oil is not produced from olives, but from the turpentine-tree in very large quantities, and adapted for every purpose. Moreover they affirm that the Iberians, who inhabit those islands, are so 35 fond of women that they give to the merchants four or five males in exchange for one female. When they receive

[^82]their pay, while serving with the Carthaginians, they purchase, it seems, nothing else but women; for no man amongst them is allowed to have gold or silver. But as a reason for their forbidding the introduction of money, z some such statement as this is added, that Heracles made his expedition against Iberia for the sake of the riches of the inhabitants.

89 In the country of the Massilians, on the borders of Liguria, they say there is a certain lake, and that this boils up and overflows, and casts out so great a quantity so of fish as to surpass belief. But whenever the monsoons blow the soil is heaped up upon it (such dust arises there), and its surface becomes solid like the ground, and the natives, piercing it with tridents, ${ }^{1}$ easily take out of it as I_{5} much fish as they please.
90 It is said that some of the Ligurians sling so skilfully that, when they see several birds, they contend with one another about which bird each is preparing to strike, presuming that all will easily hit their mark.
91 They say that there is also this peculiarity amongst them : 20 the women bring forth whilst engaged in work, and after washing the child with water, they immediately dig and hoe, and attend to their other household duties, which they were obliged to perform before the time of their delivery.
92 This is also a marvel among the Ligurians: they say ${ }_{5} 5$ that there is a river ${ }^{2}$ in their country whose stream is lifted up on high and flows along so that those on the other side cannot be seen.

93 In Etruria there is said to be a certain island named Aethaleia, in which out of a certain mine in former days copper was dug, from which they say that all the copper vessels amongst them have been wrought ; that afterwards 30 it could no longer be found : but, when a long interval of time had elapsed, from the same mine iron was produced, which the Etrurians, who inhabit the town called Populonium, use to the present day.

[^83]Now in Etruria there is a certain city called Oenarea, ${ }^{1} 94$ which they say is exceedingly strong ; for in the midst of 35 it there is a lofty hill, rising upwards to the height of thirty stadia, and having at its foot wood of all sorts, and waters. They say, therefore, that the inhabitants, fearing lest some one should become despot, set over themselves those of their slaves who had been manumitted, and these have dominion over them; but every year they appoint others of the same class in their stead.
5 At Cumae in Italy there is shown, it appears, a sub- 95 terranean bed-chamber of the prophetic Sibyl, who, they say, was of a very great age, and had always remained a virgin, being a native of Erythrae, but by some of the 10 inhabitants of Italy called a native of Cumae, and by some named Melancraera. ${ }^{2}$ It is said that this place is under the sway of the Lucanians. They state moreover that in those parts about Cumae there is a certain river called Cetus, ${ }^{3}$ and they say that whatever is thrown into this is after a considerable time first coated over, and finally turns into stone.
${ }_{15}$ Men say that for Alcimenes, the Sybarite, a mantle was 96 prepared of such magnificence, that it was exhibited at Lacinium during the festival of Hera, to which all the Italians assemble, and that it was admired more than all the things that were shown there. Of this they say that 20 Dionysius the Elder obtained possession, and sold it to the Carthaginians for one hundred and twenty talents. It was of purple, fifteen cubits in width. and was adorned on either side with little figures inwoven, above with Susa, 25 below with Persians ; in the middle were Zeus, Hera, Themis, Athene, Apollo, and Aphrodite. Near each extremity was Alcimenes, and on both sides Sybaris.

In the neighbourhood of the Iapygian promontory, from 97 a certain place in which, as the legends relate, the fight of 3_{0} Heracles with the giants took place, they say that ichor

[^84]flows in great abundance, and of such a nature that, owing to the oppressiveness of the smell, the sea off that place is innavigable. They state besides that in many parts of Italy many memorials of Heracles still exist on the roads by which he travelled. Near Pandosia in Iapygia footprints of the god are shown, on which no one must tread.
98 There is also in the neighbourhood of the Iapygian promontory a stone big enough to load a waggon, which $838^{\text {b }}$ they say was lifted up by him ${ }^{1}$ and transferred to this spot, and it was actually moved with one finger.
99 In the city of the Orchomenians in Boeotia they say that a fox was seen, which, being pursued by a dog, entered 5 into a certain subterranean passage, and that the dog entered along with her and, barking, produced a great noise, as though he found a wide space about him ; but the huntsmen, thinking there was something marvellous there, broke open the entrance, and forced their way in as well: and that, seeing the light coming in by certain holes, they had to a clear view of all that was in the cave, and went and reported it to the magistrates.
$\mathbf{1 0 0}$ In the island of Sardinia they say there are many beautiful buildings constructed in the ancient Greek style, and, amongst others, domes carved in remarkable pro- 15 portions. It is said that these were built by Iolaus, son of Iphicles, when he, having taken with him the Thespiadae, the sons of Heracles, sailed to those parts with the intention of settling there, considering that they belonged to him through his relationship with Heracles, because Heracles 20 was lord of all the western land. This island, as it appears, was formerly called Ichnussa, because it was shaped in its outline very similarly to a human footstep. ${ }^{2}$ It is stated to have been previously fertile and productive ; for the legend states that Aristaeus, whom they assert to have been most skilful in agriculture among the ancients, ruled over these 25 parts, which were formerly occupied by many large birds. At the present day, however, it is no longer fertile, because when ruled by the Carthaginians it had all its fruits that were useful for food destroyed, and death was fixed as the

[^85]penalty for the inhabitants if any one should plant again anything of the kind.

In one of the seven ${ }^{1}$ so-called islands of Aeolus, which ioi bears the name of Lipara, the legend goes that there is a tomb, about which they tell many other portentous stories, and agree in asserting that it is unsafe to approach
$839^{\text {a }}$ that place at night ; for from it are distinctly heard the sound of drums and cymbals, ${ }^{2}$ and laughter, along with uproar and the rattle of castanets. But they state that a still more prodigious event occurred with regard to the cave ; for a certain man, under the influence of wine, fell asleep in 5 it before daylight, and continued to be sought for by his servants for three days; but on the fourth, being found apparently dead, he was conveyed by his servants to his own tomb, and after obtaining all the usual rites, he suddenly rose up, and related all that had befallen him. This story seems to me somewhat fabulous, yet it was ro necessary for me not to leave it unmentioned, while giving a record of circumstances connected with that place.

Near Cumae in Italy there is a lake called Avernus, ${ }^{3}$ IO2 containing in itself, as it seems, nothing wonderful ; for they ${ }^{15}$ say that hills lie round about it not less than three stadia in height ; that it is itself circular in form and of unsurpassable depth. But this is what seems marvellous: while trees stand thickly above it, and some lean over it, one
20 cannot see a single leaf floating upon the water, while the water is so very pure that those who behold it wonder. On the mainland not far distant from it hot water springs forth from many parts, and all the place is called Pyriphlegethon. ${ }^{4}$ But to say that no bird flies over it is a lie ; 25 for those who have been there maintain that there is a large number of swans in it.

They say that the Siren islands are situated in Italy at io3 the point of the headland in the strait, which lies before 3_{0} the promontory ${ }^{5}$ separating the two bays, ${ }^{6}$ i.e. the one

[^86]surrounding Cumae and the one which cuts off from it the city called Posidonia; on which promontory also a temple of the Sirens has been built, and they are honoured exceedingly by the neighbouring peoples with diligent sacrifices, and they, making mention of their names, call one Parthenope, another Leucosia, and the third Ligeia.
104 It is stated that between the Mentoric district and that of Istria there is a mountain named Delphium with a high crest. $839^{\text {b }}$ When the Mentores, who dwell near the Adriatic, ascend this crest they descry, as it appears, the ships sailing into the Pontus ${ }^{1}$: there is also a spot, half-way between, at which when a common market is held, Lesbian, Chian, and Thasian 5 wares are sold by the merchants coming up from the Pontus, and Corcyraean jars by the merchants from the Adriatic.
105 Men say that the Ister, flowing from what are called the Hercynian woods, divides, and in one direction flows into 10 the Pontus, and in the other discharges its waters into the Adriatic. And we have seen a proof not only in the present times, but also more fully in antiquity, that the waters there are not ${ }^{2}$ innavigable; for they say that Jason sailed into the Pontus by the ' Dark Rocks', ${ }^{3}$ while he sailed out of it I_{5} by the Ister ; and for this, besides alleging not a few other evidences, they point out altars set up by Jason in the country, and in one of the islands in the Adriatic a costly temple of Artemis erected by Medea. Moreover they affirm that Jason could not have sailed past the 'Wander- 20 ing Islands', if he were not sailing away from that quarter. And moreover in the island of Aethaleia, ${ }^{4}$ which lies in the Tyrrhenian Sea, they point to other memorials of the chiefs of the Argonautic Expedition, and also to what is said respecting the pebbles; for they say that along the shore there are pebbles of various colours; and the Greeks 25 who inhabit the island say that they received their colour from the oil and dirt which the heroes scraped off, while anointing themselves; for, according to the legend, neither before these times were such pebbles seen nor afterwards had any such been found. Moreover they mention still

[^87]clearer proofs of this, that they ${ }^{1}$ did not sail out through z_{0} the Symplegades, citing the poet himself as a witness in the case of those regions ; for (say they) he; pointing out the gravity of the danger, states that it is impossible to sail past the place ${ }^{2}$ -

Planks of ships and bodies of men together are carried
By the waves of the sea and storms of fire destructive.
840^{a} As regards the 'Dark Rocks' indeed it is not said that they send forth fire ; but it happens near the strait which divides Sicily from Italy, as the eruptions of fire are found on both sides; while not only is the island continually 5 burning, but also the stream of lava round Etna often spreads over the country.

In Tarentum they say that at certain times people offer $\mathbf{1 0 6}$ sacrifices to the shades of the Atridae, Tydidae, Aeacidae, and Laertiadae, and besides that they celebrate a sacrifice separately to the Agamemnonidae on another special day, 10 on which it is unlawful for the women to taste the victims offered to those heroes. There is also amongst them a temple of Achilles. Now it is said that after the Tarentines had taken it, the place which they at present inhabit was called Heraclea; but in the carly times, when the Ionians were in possession, it was named Pleum ${ }^{3}$ ${ }^{15}$ and at a still earlicr date it was called Sigeum by the Trojans, who had gained possession of it.

Among the Sybarites Philoctetes is said to be honoured; 107 for that on his return from Troy he founded in the Crotonian territory the town called Macalla, ${ }^{4}$ which they say is one hundred and twenty stadia distant; ${ }^{5}$ and historians relate that he dedicated the bow and arrows 20 of Heracles in the temple of Apollo the sea-god: ${ }^{6}$ but from thence they say that the Crotonians, during their dominion, took them, and dedicated them in the temple of Apollo in their own city. Now it is said that having died there ${ }^{4}$ he lies by the river Sybaris, after he had given
${ }^{1}$ sc. the Argonauts. ${ }^{2}$ Od. xii. 67. ${ }^{3}$ Polieum? conj. Salmasius.

- Tzetzes on Lycophr. 927 states that Macalla contained the sepulchre of Philoctetes, which received divine honours from the people. No trace of the town remains. ${ }^{5}$ i. e. from Croton.
${ }^{6}$ Probably we should read 'A入aiov, i. e. releasing from wanderings. So Wesseling from Tzetzes on Lycophr. 9II $\pi a v \sigma \theta$ кis $\tau \bar{\eta} s$ ä $\lambda \eta s$, 'A $\lambda a i o v$

help to the Rhodians, who along with Tlepolemus had been ${ }_{25}$ carried out of their course to those parts, and had engaged in battle with the barbarians who inhabited that country.
108 In that part of Italy which is called Gargaria, close to Metapontium, they say there is a temple of Athene Heilenia, where they state that the tools of Epeus were dedicated, which he had prepared for the construction of 30 the wooden horse; he having given this surname ; ${ }^{1}$ for Athene appeared to him in a dream and desired him to dedicate the tools ; and he being therefore delayed in putting out to sea was cooped up ${ }^{2}$ in the place, unable to sail out : whence the temple was called that of Athene Heilenia.
$\mathbf{1 0 9}$ In the district which bears the name of Daunia, there $\mathbf{8 4 0}{ }^{\text {b }}$ is said to be a temple called that of the Achaean Athene, in which bronze axes and the arms of Diomedes and his companions are dedicated. In this place they state that 5 there are dogs which do no harm to such of the Greeks as come there, but fawn upon them, as though they were most familiar to them. Now all the Daunians and the neighbouring tribes, both men and women, wear black garments, apparently for the following reason-because it is said that the Trojan women, who had been taken to captives, and had come to those parts, fearing that they might experience hard slavery at the hands of the women who already belonged to the Achaeans in their native land, set fire to their ships, in order that they might escape from the expected slavery, and at the same time, that they, being united in wedlock with those men, now 15 compelled to stay, might have them for their husbands. The poet has also very admirably described them ; ${ }^{3}$ for one may see those women likewise, it seems, 'robetrailing' and 'deep-bosomed '.
no In the country of the Peucetians ${ }^{4}$ they say there is 20 a temple of Artemis, in which, they state, is dedicated the bronze necklace celebrated in those parts, with the inscription-'Diomede to Artemis'. Now the legend re-

[^88]lates that he put it round the neck of a stag, and that it ${ }^{1}$ adhered there ; and in this way having been afterwards found by Agathocles, king of the Sicilians, it was, they affirm, dedicated in the temple of Zeus. ${ }^{2}$

25
On the promontory of Sicily, called the promontory of III Pelorus, it is stated that so much saffron grows that, while by some of the Greeks dwelling in those parts it is not known what a valuable flower it is, on the promontory of ${ }_{30}$ Pelorus all who wish bring home large waggon loads of it, and in the spring-time strew their beds and stages ${ }^{3}$ with saffron.

Polycritus, who has written the history of Sicily in verse, $\mathbf{1 1 2}$ states that in a certain part of the interior there is a little lake, with a circumference about that of a shield, and this
35 contains water transparent indeed, but somewhat turbid. $84 \mathrm{I}^{\mathrm{a}}$ Now if any one enters this, intending to wash himself, it increases in breadth ; but if a second person ${ }^{4}$ enters, it grows wider still ; and finally, having grown larger, it becomes wide enough for the reception of even fifty men.
${ }_{5}$ But whenever it has received this number, swelling up again from the bottom it casts the bodies of the bathers high in the air and out on the ground; but, as soon as this has occurred, it returns once more to the original form of its circumference. And not only in the case of men does this occur with regard to it, but also, if a quadruped enters, it experiences the same result.
10 In the dominion of the Carthaginians ${ }^{5}$ they say there is II3 a mountain which is called Uranion, ${ }^{6}$ full of all kinds of wood and variegated with many flowers, so that the contiguous places over a wide extent partaking of its fragrance waft to the travellers a most agreeable odour. Near this 15 spot they say that there is a spring of oil, and that it has a smell like that of cedar sawdust. But they say that the person who approaches it must be chaste, and, if this is

[^89]the case, it spouts up the oil in greater abundance, so that it can be safely drawn.
i14 Men say that near this spring also there is a natural rock 20 of great size. Now they say that when summer is come it sends up a flame of fire, but when winter arrives, from the same place it sends gushing up a stream of water so cold that, when compared with snow, it does not differ from it. And this, they declare, is not a secret occurrence, nor does it appear for only a short time ; but it sends forth ${ }_{25}$ the fire throughout the whole summer, and the water throughout the whole winter.
115 It is reported that in that part of Thrace which is called the country of the Sinti and Maedi, there is a certain river named Pontus, in which are carried down certain stones 30 which burn, and are of a nature opposed to that of charcoal from wood ; for while fanned they are quickly extinguished, but when sprinkled with water they blaze up and kindle better. Now, when they are burning, they have a smell $84 \mathrm{I}^{\text {b }}$ similar to that of bitumen, so bad and pungent that no creeping thing remains in the place while they are burning.
116 They say, moreover, that in their country there is a certain place, not very small, about twenty stadia in extent, that bears barley, which the men indeed use ; but the horses and oxen, or any other animal, will not eat it : nay, not 5 even does any pig or dog venture to taste the excrement of men who after eating a cake or bread made from this barley have voided it, as death results from it.
II7 At Scotussae in Thessaly they say there is a little fountain from which flows water of such a kind that in io a moment it heals wounds and bruises both of men and of beasts of burden; ${ }^{1}$ and if any one throws wood into it, without having quite broken it, but having merely split it, this unites, and is restored again to its original state.
n8 In Thrace above Amphipolis they say that a thing ${ }_{15}$ happens, which is wonderful and incredible to those who have not seen it ; for the boys, going forth from the villages and neighbouring districts to catch little birds, take the

1 Theopompus ap. Plin. xxxi. 2 makes the same statement, as also Sotion, de Flum. p. 124, on the authority of Isigonus. Cf. Antigonus Car. p. 157.
hawks to help in catching them, and they do so in this 20 manner:-When they have advanced to a suitable spot they call the hawks by name with a loud cry; and, when they hear the boys' voice, they come and frighten away the birds; these in terror of them take refuge in the bushes, where the boys strike them down with sticks and capture them. But 25 what one would be most of all surprised at is this-whenever the hawks themselves have seized any of the birds, they throw them down to the bird-catchers, while the boys return home, after giving some portion of all their booty to the hawks.

Another marvel also they say occurs among the Heneti: ${ }^{1} 119$ 3o that countless myriads of jackdaws are frequently borne to their country, and eat up the corn when the people have sown it. To them the Heneti offer gifts, before the 842^{2} birds are about to fly to the borders of the land, throwing before them seeds of all kinds of fruits. Now if the jackdaws taste these they do not come over into their country, and the Heneti know that they will be in peace; but, if they do not taste them, the people thereupon expect an attack to be made upon them by their enemies.

5 In the Thracian Chalcidice, ${ }^{2}$ near Olynthus, they say 120 there is a place called Cantharolethros, ${ }^{3}$ a little larger in size than a threshing-floor; and that when any other living creature reaches the spot it departs again; but none of 10 the beetles that come there do so ; but they going round and round the place die from hunger.

Among the Thracian Cyclopes there is a little spring I2I containing water, which in appearance indeed is pure, transparent, and like all others ; but, when an animal drinks of it, straightway it perishes.
${ }^{15}$ Men say that in Crastonia, near the country of the $\mathbf{1 2 2}$ Bisaltae, the hares that are captured have two livers ; and that there is a certain place, about a rood in extent, into which whatever animal enters dies. There is in the same place, besides, a temple of Dionysus, large and 20 beautiful, in which, when the festival and sacrifice take

[^90]place, it is said that a great blaze of fire is seen when the god is going to produce a good season, and that all those who are assembled round the sacred enclosure see it; when, however, he intends to cause unfruitfulness, this light is not seen, but darkness extends over the place, as during the other nights.
123 In Elis they relate that there is a certain building about ${ }_{25}$ eight furlongs distant from the city, in which, at the festival of Dionysus, they place three empty copper caldrons. Having done this, they request any of the Greeks staying in the city, who wishes, to examine the vessels, and to seal the doors of the house: then, when they are about to open 30 them, they point out the seals to the citizens and strangers first of all, before they do so. They on entering find the caldrons indeed full of wine, but the floor and the walls uninjured, so that it is impossible to entertain a suspicion that they accomplish this by some trick. Moreover, they say that amongst the same people there are kites, which snatch 35 the meat from those who carry it through the market- $8 \mathbf{4 2}^{\text {b }}$ place, but do not touch the flesh of the sacred victims.
124 It is said that at Coronea in Boeotia the animals called 5 moles cannot live, or dig up the ground, while the rest of Boeotia possesses a large number of them.

At Lusi ${ }^{1}$ in Arcadia men say there is a certain spring in which field-mice are found and swim, passing their lives in it. The same thing is said to occur likewise at Lampsacus.
126 At Crannon in Thessaly they say there are only two 10 crows ${ }^{2}$ in the city. When these have hatched their young, they depart from the place, as it appears, but leave behind as many others of their offspring.
127 In Apollonia, which lies near to the country of the 1_{5} Taulantii, ${ }^{3}$ they say there is bitumen obtained by digging, and pitch springing up from the earth, in the same manner

[^91]as springs of water, in no respect differing from that of Macedonia, but that it is naturally blacker and thicker than that. And not far from this place there is a fire 20 burning at all times, as those who dwell in the neighbourhood assert. The burning place, it appears, is not large, but about the size of the space occupied by five couches. This spot smells of sulphur and alum, ${ }^{1}$ and thick grass grows around, at which one would be most surprised, and 25 also large trees, not four cubits distant from the fire. Moreover, a fire burns constantly in Lycia and near Megalopolis in Peloponnesus.

It is said also that among the Illyrians the cattle bring $\mathbf{1 2 8}$ forth young twice in the year, and that most of them have twins, and that many goats bring forth three or four kids 30 at a time, and some even five or more ; and, besides, that they readily yield nine pints of milk. They say too that the hens do not lay merely once, as among other nations, but twice or thrice in the day.

It is said that the wild oxen in Paeonia are far larger $\mathbf{1 2 9}$ than those that are found in other nations, and that their 35 horns contain twenty-four pints, and those of some of them even more.
$843^{\text {a }}$ Concerning the Sicilian Strait, apart from what many 130 other writers have written, this author ${ }^{2}$ states that a portentous occurrence takes place: the billows, he says, being carried with a loud whistling sound from the Tyrrhenian 5 Sea, dash against both the promontories, that of Sicily and that of Italy, which is called Rhegium, and being borne from a great sea are shut up in a narrow space ; and when this occurs they raise the waves with a loud roar in midair to a very great height, as they dash upwards, so that rothe rising of the waters is visible to those who are far away, not resembling the rising of the sea, but white and foaming, and similar to the sweeping movements which take place in excessively violent storms: and that sometimes the waves meet each other on both the promontories

[^92]and produce a collision ${ }^{1}$ incredible in description, and unen- ${ }^{15}$ durable for the eyes to behold ; but at other times parting, after dashing against each other, they show an abyss, ${ }^{2}$ so deep and horrible to those who are compelled to look on, that many are unable to restrain themselves, and fall, blinded with terror. But when the waves, after dashing 20 on either of the two places and being carried to the tops of the promontories, have descended again into the sea flowing beneath, then again with loud bellowing and great and swift eddies the sea boils up, and is lifted on high from the depths in confusion, and assumes alternately all kinds 25 of hues, for it appears at one time dark, at another blue, and oftentimes of a purplish colour: but no creeping thing can endure cither to hear or to see the quick rush and length of this sea, and besides these its ebb, but all flee to the low-lying skirts of the mountains ; but, when the heaving 30 of the billows ceases, the eddies are borne on high, making such various twistings that they seem to produce movements resembling the coils of presteres, ${ }^{3}$ or some other large snakes.
13I Men say that, while the Athenians were building the $843^{\text {b }}$ temple of Demeter at Eleusis, a brazen pillar was found surrounded with rocks, on which had been inscribed-- This is the tomb of Deïope', whom some state to have been the wife of Musaeus, others the mother of Triptolemus. 5
132 In one of the islands, called the islands of Aeolus, they say that a large number of palm-trees grow, whence it is also called 'Palm-island'; therefore that could not be true which is asserted by Callisthenes, that the tree ${ }^{4}$ received its name from the Phoenicians, who inhabited the sea-coast to of Syria. But some state that the Phoenicians themselves received this name from the Greeks, because they, first of all sailing over the sea, slew and murdered all, wherever they landed. And moreover in the language of the Perrhaebians the verb 'phoenixai' means 'to stain with blood '. 5

[^93]In what is called the Aeniac district, in the neighbour- 133 hood of the city named Hypate, ${ }^{1}$ an old pillar is said to have been discovered; and the Aenianians, wishing to know to whom it belonged, as it had an inscription in ancient characters, sent certain persons to take it to Athens. But as they were proceeding through Boeotia, and were 20 communicating to some of their guest friends the object of their journey, it is said that they were conducted into the so-called Ismenium ${ }^{2}$ at Thebes; for there the meaning of the inscription could be most easily discovered, they said, adding that there were in that place some ancient dedicatory offerings having the forms of the letters similar to those of the one in question: whence they say that, 25 having found an explanation of the objects of their inquiry, from what was already known to them, they copied down the following lines :-

I Heracles offered the grove to the beaming goddess Cythera,
When I had Geryon's herds, and Erytheia for spoil ;
For with desire for her the goddess had vanquished my heart.
30
But here my wife Erythe brings forth Erython as her offspring,
Nymph-born maid Erythe, to whom I yielded the plain, Sacred memorial of love under the shade of the beech.
$844^{\text {a }}$ With this inscription both that place corresponded, being called Erythus, and also the fact that it was from thence, and not from Erytheia, that he drove away the cows; for 5 they say that nowhere either in the parts of Libya or Iberia is the name of Erytheia to be found.

In the city called Utica in Libya, which is situated, as $\mathbf{I} 34$ they say, on the gulf between the promontory of Hermes ${ }^{3}$ and that of Hippos, and about two hundred furlongs so beyond Carthage (now Utica also is said to have been founded by Phoenicians two hundred and eighty-seven years before Carthage itself, as is recorded in the Phoenician histories), men state that salt is obtained by digging

[^94]at a depth of eighteen feet, in appearance white and not solid, but resembling the most sticky gum ; and that when brought into the sun it hardens, and becomes like Parian I_{5} marble; and they say that from it are carved figures of animals, and utensils besides.

135 It is said that those of the Phoenicians who first sailed to Tartessus, ${ }^{1}$ after importing to that place oil, and other small wares of maritime commerce, obtained for their return cargo so great a quantity of silver, that they were 30 no longer able to keep or receive it, but were forced, when sailing away from those parts, to make of silver not only all the other articles which they used, but also all their anchors.

I36 They say that the Phoenicians who inhabit the city called Gades, when they sail outside the Pillars of Heracles ${ }_{25}$ under an easterly wind for four days, arrive at certain desolate places, full of rushes and seaweed, and that these places are not covered with water, whenever there is an ebb, but, whenever there is a flood, they are overflowed, and in these there is found an exceeding great number of 30 tunnies, of a size and thickness surpassing belief, when they are stranded. These they salt, pack up in vessels, and convey to Carthage. They are the only fish which the Carthaginians do not export; on account of their excellence for food, they consume them themselves.
137 In the district of Pedasa in Caria a sacrifice is celebrated ${ }_{35}$ in honour of Zeus, at which they send in the procession $844^{\text {b }}$ a she-goat, with regard to which they say that a marvellous thing occurs; for while it proceeds from Pedasa a distance of seventy furlongs, through a dense crowd of people looking on, it is neither disturbed in its progress, nor is turned out of the way, but, being tied with a rope, advances ${ }_{5}$ before the man who holds the priesthood.
[And they say that its horns contain twenty-four pints, and in some cases even more.] What is wonderful is that two crows stay continually about the temple of Zeus, while

[^95]no other approaches the spot, and that one of them has the front part of its neck white.

In the country of those Illyrians who are called Ardiaei, 138 10 near the boundaries separating them from the Antariates, they say there is a great mountain, and near this a valley, from which water springs up, not at every season, but during the spring, in great abundance; which the people take, and keep during the day indeed in a cellar, but ${ }_{15}$ during the night they set it in the open air. And, after they have done this for five or six days, the water congeals, and becomes the most excellent salt, which they preserve especially for the sake of the cattle: for salt is not imported to them, because they live at a distance from the sea, and have no intercourse with others. They have therefore 20 most need of it for their cattle; for they supply them with salt twice in the year ; but if they fail to do this, the result is that most of their cattle perish.

In Argos they say there is a species of locust which 139 ${ }_{25}$ is called the scorpion-fighter; ${ }^{1}$ for, as soon as it sees a scorpion, it attacks him, and likewise the scorpion attacks it. It chirps as it goes round him in a circle. The other, they say, raises his sting, and turns it round against his adversary in the same spot; then he gradually lets his sting drop, and at last stretches himself out altogether on the ground, while the locust runs round him. At last the locust 30 approaches and devours him. They say that it is good to eat the locust as an antidote against the scorpion's sting.

They say that the wasps in Naxos, when they have 140 tasted the flesh of the viper (and its flesh, as it appears, is agreeable to them), and when they have afterwards stung any one, inflict so much pain, that their sting seems more dangerous than that of the vipers.
$845^{\text {a }}$ They say that the Scythian poison, in which that people $\mathbf{I 4 I}$ dips its arrows, is procured from the viper. The Scythians, it would appear, watch those that are just bringing forth young, and take them, and allow them to putrefy for some days. But when the whole mass appears to them

[^96]to have become sufficiently rotten, they pour human blood 5 into a little pot, and, after covering it with a lid, bury it in a dung-hill. And when this likewise has putrefied, they mix that which settles on the top, ${ }^{1}$ which is of a watery nature, with the corrupted blood of the viper, and thus make it a deadly poison.
142 At Curium ${ }^{2}$ in Cyprus they say there is a species of io snake, which has similar power to that of the asp in Egypt, except that, if it bites in the winter, it produces no effect, whether from some other reason, or because when congealed with cold the reptile loses its power of movement, and becomes completely powerless, unless it be warmed.
143 In Ceos they say there is a species of wild pear ${ }^{3}$ of such 15 a kind that, if any one be wounded by its thorn, he dies.
144 In Mysia they say there is a white species of bears, which, when they are hunted, emit a breath of such a kind as to rot the flesh of the dogs, and likewise of other wild beasts, and render them unfit for food. But, if any one 20 approaches them with violence, they discharge, it appears, from the mouth a very great quantity of phlegm, which the animal blows upon the faces of the dogs, and of the men as well, so as to choke and blind them.
145 In Arabia they say there is a certain kind of hyaena, which, when it sees some wild beast, before being itself 25 seen, or steps on the shadow of a man, produces speechlessness, and fixes them to the spot in such a way that they cannot move their body; and it is said that they do this in the case of dogs also.
146 In Syria they say there is an animal, which is called the lion-killer; for the lion, it seems, dies, whenever he eats any of it. He does not indeed do this willingly, but 30 rather flees from the animal ; but when the hunters, having caught and roasted it, sprinkle it, like white meal, over some other animal, they say that the lion, after tasting it, dies on the spot. This animal injures the lion even by making water upon it.

[^97][^98]It is said also that vultures die from the smell of $\mathbf{1 4 7}$ $845^{\text {b }}$ unguents, ${ }^{1}$ if any one anoints them, or gives them something smeared with an unguent to eat: likewise they say that beetles also die from the smell of roses.

They say that both in Sicily and Italy the star-lizards $\mathbf{I} 48$ have a deadly bite, and not like those among ourselves a weak and soft bite: moreover that there is a sort of mice, which flies at people, and, when it bites, causes them to die.

In Mesopotamia, a region of Syria, and at Istrus, ${ }^{2}$ they 149 ro say that there are certain little snakes, which do not bite the people of the country, but do great injury to strangers.

At the Euphrates they say that this especially happens; $\mathbf{I 5 O}$ for that many are seen about the edges of the river, swimming also towards either bank; so that while seen in the evening on this side, at daybreak they appear on the other ${ }^{15}$ side; and that they refrain from biting such of the Syrians as are taking their repose, but do not spare the Greeks.

In Thessaly they say that the snake which is called I5I sacred destroys all persons, not merely if it bites, but even if it touches them; and so when it appears (but it appears ${ }_{25}$ rarely), and they hear its voice, both serpents and vipers, and all the other wild beasts flee. It is not large, but of a moderate size. In the city of Tenos in Thessaly they say it was once destroyed by a woman, and that its death happened in the following manner:-The woman, having described a circle and put the charms therein, 25 entered into the circle, herself and her son, and then imitated the hissing of the beast; it answered the sound of her voice and approached ; but, while it was hissing, the woman fell asleep, and the more profoundly, the closer it drew nigh, so that she could not overcome the power of sleep: but her son, sitting beside her, aroused her by 30 striking her, as she had bidden him to do, saying that, if she fell asleep, both she and he should perish, whereas if she used force, and drew the animal towards her, they

[^99]should be saved. But the snake, when it came up to the circle, immediately withered away.
152 It is said that near Tyana there is water sacred to Zeus Horcios ${ }^{1}$-they call it Asbamaeon-whose spring rises 35 very cold, but boils up like caldrons. This water is sweet $846^{\text {a }}$ and propitious to those who observe their oaths; but punishment follows on the heels of the perjured; for it falls upon their eyes, hands, and feet, and they are seized with dropsies and consumptions; and it is not even possible to get away beforehand, but they are held on the 5 spot, and lament beside the water, confessing the perjuries they have committed.
153 At Athens they say that the sacred branch of the olive tree ${ }^{2}$ in one day buds and increases, but quickly shrinks together again.
154 When the craters in Etna once burst forth, and the lava was carried hither and thither over the land like a torrent, io the deity honoured the race of the pious; for when they were hemmed in on all sides by the stream, because they were bearing their aged parents on their shoulders, and were trying to save them, the stream of fire, having come near to them, was cleft asunder, and turned aside one part 15 of the flame in this direction, another in that, and preserved the young men unharmed, along with their parents.
155 It is said that the sculptor Phidias, while constructing the Athene in the Acropolis, carved his own face in the 20 centre of her shield, and connected it by an imperceptible artifice with the statue, so that, if any one wished to remove it, he must necessarily break up and destroy the whole statue.
156 They say that the statue of Bitys in Argos killed the man who had caused the death of Bitys, by falling upon him while he was looking at a spectacle. It appears therefore that such events do not happen at random. ${ }^{3}$
157 Men say that the dogs pursue the wild beasts only to ${ }_{25}$

[^100]the summits of the so-called Black Mountains, but turn back when they have pursued them as far as these.

In the river Phasis it is related that a rod called the $\mathbf{1 5 8}$
${ }_{30}$ ' White-lcaved' grows, which jealous husbands pluck, and throw round the bridal-bed, ${ }^{1}$ and thus preserve their marriage unadulterated.

In the Tigris they say there is a stone found, called in 159 the barbarian language Modon, with a very white colour, and that, if any one possesses this, he is not harmed by wild beasts.
\therefore In the Scamander they say a plant grows, called Sistros, ${ }^{2}$ I60 resembling chick-pea, and that it has secds that shake, from which fact it has obtained its name: those who possess it (so it is said) fear neither demon nor spectre of any kind.

In Libya there is a vine, which some people call mad, I6I 846° that ripens some of its fruit, others it has like unripe grapes, and others in blossom, and this during a short time.

On Mount Sipylus they say there is a stone like a 162 cylinder, which, when pious sons have found it, they place in in sacred precincts of the Mother of the Gods, and never err through impiety, but are always affectionate to their parents.

On Mount Taÿgctus (it is said) there is a plant called 163 Charisia," which women in the beginning of spring fasten round their necks, and are loved more passionately by their husbands.

Othrys is a mountain of Thessaly, which produces 164 serpents that are called Sepes, ${ }^{4}$ which have not a single colour, but always resemble the place in which they live. Some of them have a colour like that of land-snails, while the scales of others are of a bright green; but all of them : that dwell in the sands become like these in colour. When they bite they produce thirst. Now their bite is not rough and fiery, but malicious.

[^101][^102]165 When the dark-coloured adder copulates with the female, the femalc during the copulation bites off the head of the male; therefore also her young ones, as though avenging 20 their father's death, burst through their mother's belly.
I66 In the river Nile they say that a stonc like a bean is produced, and that, if dogs see it, they do not bark. It is beneficial also to those who are possessed by some demon ; for, as soon as it is applied to the nostrils, the demon 25 departs.
167 In the Macander, a river of Asia, they say that a stone is found, called by contradiction 'sound-minded'; for if one throws it into any one's bosom he becomes mad, and kills some one of his relations.
168 The rivers Rhine and Danube flow towards the north. one passing the Germans, the other the Paeonians. In the so summer they have a navigable stream, but in the winter they are congealed from the cold, and form a plain orer which men ride.
169 Near the city of Thurium they say there are two rivers, the Sybaris and the Crathis. Now the Sybaris causes the horses that drink of it to be timorous, while the Crathis sas makes men yellow-haired when they bathe in it.
170 In Euboea there are said to be two rivers; the sheep that drink from one of them become white; it is called Cerbes: the other is the Nelcus, which makes them black.
171 Near the river Lycormas ${ }^{1}$ it is said that a plant ${ }^{2}$ grows, $847^{\text {a }}$ which is like a lance, and is most beneficial in the case of dim sight.

172 They say that the fountain of Arethusa at Syracuse in Sicily is set in motion every five years.
173 On Mount Berecynthius " it is said that a stonc is pro- $\overline{\bar{o}}$ duced called 'the Sword', and if any one finds it, while the mysteries of Hecate are being celebrated, he becomes mad, as Eudoxus affirms.

[^103]
847 ${ }^{\mathrm{a}}$ DE MIRABILIBUS AUSCULTATIONIBUS

On Mount Tmolus ${ }^{3}$ it is said that a stone is produced $\mathbf{1 7 4}$ like pumice-stone, which changes its colour four times ro in the day; and that it is only seen by maidens who have not yet attained to years of discretion.
$847^{\text {b }}$ On the altar of the Orthosian ${ }^{2}$ Artemis it is said that 175 a golden bull stands, which bellows when hunters enter the temple.

Among the Aetolians it is said that moles see, but only 176 dimly, and do not feed on the earth, but on locusts.
5 They say that elcphants are pregnant during the space 177 of two years, while others say during eighteen months; and that in bringing forth they suffer hard labour.

They say that Demaratus, the pupil of the Locrian 178 Timaeus, having fallen sick, was dumb for ten days; but on the eleventh, having slowly come to his senses after his delirium, he declared that during that time he had io lived most agreeably.

[^104]
M E C H A N I C A

BY

E. S. FORSTER

OXFORD
AT THE CLARENDON PRESS
1913

PREFACE

Whilst the scientific standpoint of the Mechanica is certainly Peripatetic, the writer's interest in the practical application of the problems involved is quite un-Aristotelian. The text used for this translation is that of O. Apelt (Teubner, 1888). The edition of J. P. van Capelle (Amsterdam, I8I2) has been invaluable both for its apparatus criticus and for its commentary.

My warmest thanks are due to Mr. W. D. Ross, Fellow of Oriel College, for many valuable suggestions, and to my father, Mr. M. S. Forster, M.A., B.C.L., B.Sc., whose constant advice, particularly on scientific points, has assisted me on every page of this treatise.
E. S. F.

CONTENTS

CHAP.
I. Introduction; the problems of mechanics; the marvellous properties of the circle. Why are large balances more accurate than small?
2. Why in a balance, if the cord is attached to the upper surface of the beam, does the beam rise again when the weight is taken away, whereas, if the cord is attached to the lower surface, it does not rise?
3. Why does a lever raise a great weight with the exercise of little force, whereas the lighter a weight is the easier it is to move, and the weight is less without the lever?
4. Why do the rowers who are amidships contribute most to the movement of the ship?
5. Why does a small rudder move a large ship with the exercise of little force?
6. Why does a ship travel quicker the higher the yard-arm is raised ?
7. Why do sailors draw in the nearer part of the sail and let out the part nearer to the bow when they wish to keep their course in an unfavourable breeze?
S. Why are spherical and circular bodies easy to move ?
9. Why are bodies moved more easily and quickly when they are lifted or drawn along by circles of large circumference ?
10. Why does a balance move more easily without a weight upon it ?
II. Why are heavy weights more easily conveyed on rollers than on carts?
12. Why do missiles travel further from a sling than from the hand ?
13. Why is a capstan easier to move when it has long than when it has short bars, and a windlass when it has long handles?
I4. Why is it easier to break a piece of wood across the knee if one holds the ends at equal distances from the knee?
15. Why are pebbles round, though formed from stones and shells which are elongated in shape?
16. Why is it that the longer the plank is the weaker it is and the more easily it bends?
17. Why does a wedge, which is a small thing, exert great pressure and split large masses?
18. Why is it that great weights can be moved by means of a double pulley with the exercise of little force ?

CONTENTS

CHAP.
19. Why is it that an axe does not cut wood if it be loaded with a heavy weight and its edge placed on the wood, whereas it splits the wood if struck upon it?
2o. Why does a steelyard weigh large masses with a small counterpoise?
21. Why can a dentist extract a tooth more easily with a toothextractor, which is an additional weight, than with the hand only?
22. Why are nuts more easily cracked with nut-crackers than by a blow?
23. Why is it that in a rhombus, when the points at the extremities are moved in two movements, they do not describe equal straight lines, but one of them a much longer line than the other?
24. Why do a large and a small circle trace an equal path when placed about the same centre, but when they are rolled separately their paths are to one another in the proportion of their dimensions?
25. Why are beds so constructed that one dimension is double the other, and why are not bed-ropes stretched diagonally?
26. Why is it more difficult to carry a long plank on the shoulder if it is held at the end than if it is held in the middle ?
27. Why is a long object more difficult to carry on the shoulder than a short one ?
28. Why in the construction of a 'swipe' for drawing water is a weight put at the end of the bar, the bucket itself being a weight?
29. Why, when two men are carrying a weight on a piece of wood, is the pressure on them unequal unless the weight is in the middle ?
30. Why is it that in rising from a sitting position it is necessary to make an acute angle between the thigh and the lower leg?
31. Why is a body which is already in motion easier to move than one which is at rest?
32. Why does an object which is thrown eventually come to a standstill :
33. Why is it that a body is carried on by a motion not its own, though that which impelled it does not keep following it and pushing it along ?
34. Why is it that neither small nor large objects necessarily travel far when thrown, but their movement has due relation to the person who throws them?
35. Why is it that an object which is carried along in whirling water is always eventually carried into the middle?

MECHANICA

OUr wonder is excited, firstly, by phenomena which occur $847^{\text {a }}$ in accordance with nature but of which we do not know the cause, and secondly by those which are produced by art despite nature for the benefit of mankind. Nature often operates contrary to human expediency; for she always follows the same course without deviation, whereas human ${ }_{15}$ expediency is always changing. When, therefore, we have to do something contrary to nature, the difficulty of it causes us perplexity and art has to be called to our aid. The kind of art which helps us in such perplexities we call Mechanical Skill. The words of the poet Antiphon are 2 , quite true :
' Mastered by Nature, we o'ercome by Art.'
lnstances of this are those cases in which the less prevails over the greater, and where forces of small motive power move great weights-in fact, practically all those problems which we call Mechanical Problems. They are not quite identical nor yet entirely unconnected with Natural 25 Problems. They have something in common both with Mathematical and with Natural Speculations; for while Mathematics demonstrates how phenomena come to pass ; Natural Science demonstrates in what medium they occur.

Among questions of a mechanical kind are included 847° those which are connected with the lever. It seems strange that a great weight can be moved with but little force, and that when the addition of more weight is involved ; for the very same weight, which one cannot move at all without a lever, one can move quite easily with it, in spite 15 of the additional weight of the lever.

The original cause of all such phenomena is the circle. It is quite natural that this should be so ; for there is nothing strange in a lesser marvel being caused by a greater
marvel, and it is a very great marvel that contraries should be present together, and the circle is made up of contraries. ${ }_{20}$ For to begin with, it is formed by motion and rest, ${ }^{1}$ things which are by nature opposed to one another. Hence in examining the circle we need not be much astonished at the contradictions which occur in connexion with it. Firstly, in the line which encloses the circle, being without ${ }^{25}$ breadth, two contraries somehow appear, namely, the concave and the convex. These are as much opposed to one another as the great is to the small; the mean being in the latter case the equal, in the formor the straight. Therefore just as, if they are to change into one another, the greater and smaller must become equal before they can $848^{\text {a }}$ pass into the other extreme ; so a line must become straight in passing from convex into concave, or on the other hand from concave into convex and curved. This, then, is one peculiarity of the circle.

Another peculiarity of the circle is that it moves in two 5 contrary directions at the same time ; for it moves simultancously to a forward and a backward position. ${ }^{2}$ Such, too, is the nature of the radius which describes a circle. For its extremity comes back again to the same position from which it starts; for, when it moves continuously, its last position is a return to its original position, in such 10 a way that it has clearly undergone a change from that position.

Therefore, as has already been remarked, there is nothing strange in the circle being the origin of any and every marvel. The phenomena observed in the balance can be referred to the circle, and those observed in the lever to ${ }_{15}$ the balance; while practically all the other phenomena of mechanical motion are connected
 with the lever. Furthermore, since no two points on one and the
${ }^{1} 847^{\mathrm{b}}$ 20. i. e. by the motion of a line round a fixed point.
${ }^{2} 848^{3} 5$. If a circle be divided into two halves a and β, when the circle is revolved in a forward direction a will move towards δ and β towards γ.
same radius travel with the same rapidity, but of two points that which is further from the fixed centre travels more quickly, many marvellous phenomena occur in the motions of circles, which will be demonstrated in the following problems.

Because a circle moves in two contrary forms of motion 20 at the same time, and because one extremity of the diameter, A , moves forwards and the other, B , moves backwards, some people contrive so that as the result of a single movement a number of circles move simultaneously in contrary directions, like the whecls of brass and iron which they make and dedicate in the temples. Let $A B$ be ${ }^{25}$ a circle and $\Gamma \Delta$ another circle in contact with it; then if

the diameter of the circle AB moves forward, the diameter $\Gamma \Delta$ will move in a backward direction as compared with the circle $A B$, as long as the diameter moves round the same point. The circle $\Gamma \Delta$ therefore will move in the opposite 30 direction to the circle AB . Again, the circle $\Gamma \Delta$ will itself make the adjoining circle EZ move in an opposite direction to itself for the same reason. The same thing will happen in the case of a larger number of circles, only one of them being set in motion. Mechanicians scizing on this inherent peculiarity of the circle, and hiding the principle, construct 35 an instrument so as to exhibit the marvellous character of the device, while they obscure the cause of it.

I First, then, a question arises as to what takes place $848^{\text {b }}$ in the case of the balance. Why are larger balances more accurate than smaller? And the fundamental principle of this is, why is it that the radius which extends further from
the eentre is displaced quirker than the smaller radius, : when the near radius is moved by the same force? Now we use the word 'quicker' in two senses ; if an object traverses an equal distance in less time, we call it quicker, and also if it traverses a greater distance in equal time. Now the greater radius describes a greater circle in equal time ; for the outer circumference is greater than the inner.
The reason of this is that the radius undergocs two displacements. Now if the two displacements of a body are in any fixed proportion, the resulting displacement must necessarily be a straight line, and this ${ }^{1}$ line is the diagonal of the figure, made by the lines drawn in this proportion.
${ }_{15}$ Let the proportion of the two displacements be as $A B$ to

$A \Gamma,{ }^{2}$ and let A be brought ${ }^{3}$ to B, and the line $A B$ brought down to HГ. Again, let A be brought to Δ and the line AB to E ; then if the proportion of the two displacements be maintained, $A \Delta$ must necessarily have the same proportion to $A E$ as $A B$ to $A \Gamma$. Therefore the small parallelo20 gram is similar to the greater, and their diagonal is the same, so that A will be at 7 . In the same way it can be shown, at whatever points the displacement be arrested, that the point A will in all cases be on the diagonal.

And the converse is also truc. It is plain that, if a point be moved along the diagonal by two displacements, it is necessarily moved according to the proportion of the sides

[^105]of the parallelogram ; for otherwise it will not be moved along the diagonal. If it be moved in two displacements 25 in no fixed ratio for any time, its displacement cannot be in a straight line. For let it be a straight line. This then being drawn as a diagonal, and the sides of the parallelogram filled in, the point must necessarily be moved according to the proportion of the sides; for this has already been 30 proved. Therefore, if the same proportion be not maintained during any interval of time, the point will not describe a straight line; for, if the proportion were maintaincd during any interval, the point must necessarily describe a straight line, by the reasoning above. So that, if the two displacements do not maintain any proportion

Fig. 3. during any interval, a curve is produced.

Now that the radius of a circle has two simultaneous displacements is plain from these considerations, and because the point ${ }^{1}$ from being vertically above the $849^{\text {a }}$ centre comes back to the perpendicular, so as to be again perpendicularly above the centre.
Let $A B \Gamma$ be a circle, and let the point B at the summit be displaced to Δ by one force, and come eventually to Γ by the other force. If then it were moved in the proportion : of $\mathrm{B} \Delta$ to $\Delta \Gamma$, it would move along the diagonal $\mathrm{B} \mathrm{\Gamma}$. But in the present case, as it is moved in no such proportion, it moves along the curve ВЕГ. And, if one of two displacements caused by the same forces is more interfored with and the other less, it is reasonable to suppose that the motion more interfered with will be slower than the motion less interfered with; which scems to happen in the case 10 of the greater and less of the radii of circles. For on account

[^106]of the extremity of the lesser radius being nearer the stationary centre than that of the greater, being as it were pulled in a contrary direction, towards the middle, ${ }^{1}$ the 15 extremity of the lesser moves more slowly. This is the case with every radius, and it moves in a curve, naturally along the tangent, and unnaturally towards the centre. And the lesser radius is always moved more in respect of its unnatural motion; for being nearer to the retarding centre it is more constrained. And that the less of two radii having the same centre is moved more than the greater 20 in respect of the unnatural motion is plain from what follows.

Let BCE \triangle be a circle, and XNUE another smaller circle within it, both having the same centre A , and let the ${ }_{25}$ diameters be drawn, $\Gamma \Delta$ and BE in the large circle, and MX and NE in the small; and let the rectangle $\Delta \Psi P \Gamma$ be completed. If the radius AB comes back to the same position from which it started, i.e. to AB , it is plain that it moved towards itself; and likewise AX will come to

Fig. 4.

30 AX. But AX moves more slowly than $A B$, as has been stated, because the interference is greater and AX is more retarded.

Now let $A \Theta H$ be drawn, and from Θ a perpendicular upon $A B$ within the circle, ΘZ; and, further, from Θ let $\Theta \Omega$ be drawn parallel to AB , and $\Omega 2 \Upsilon$ and HK perpendiculars on 35 AB ; then $\Omega \Upsilon$ and ΘZ are equal. Therefore $B \Upsilon$ is less than XZ ; for in unequal circles equal straight lines drawn perpendicular to the diameter cut off smaller portions of the diameter in the greater circles; $\Omega \Omega$ and ΘZ being equal. ${ }^{2}$

${ }^{2} 849^{2} 38$. According to the parallelogram of distances, the result ought to be:-BY: $\Upsilon \Omega:: X Z: \Theta Z$, but it is proved that $\Upsilon \Omega$ and ΘZ are equal. but BY and $X Z$ unequal: so that the theory of the parallelogram

Now the radius $A \Theta$ describes the are $\mathrm{X} \Theta$ in the same time 849^{b} as the extremity of the radius BA has described an are greater than 13Ω in the greater circle; for the natural displacement is equal and the unnatural less, B Υ being less than XZ. Whereas they ought to be in proportion, the two natural motions in the same ratio to each other ${ }_{5}$ as the two unnatural motions.

Now the radius AB has described an are BH greater than $B \Omega$. It must necessarily have described $B H$ in the time in which X describes $\mathrm{X} \Theta$; for that will be its position when in the two circles the proportion between the unnatural and natural movements holds good. If, then, the ro natural movement is greater in the greater circle, the unnatural movement, too, would agree in being proportionally greater ${ }^{1}$ in that case only, where B is moved along BH while X is moved along $\mathrm{X} \Theta$. For in that case the point B comes by its natural movement to H , and by its unnatural movement to K, HK being perpendicular from II. And as HK to BK, so is Θ) to XZ . Which will be plain, I_{5} if P , and X be joined to $I I$ and $\Theta .{ }^{2}$ But, if the are described by 13 be less or greater than HB , the result will not be the same, nor will the natural movement be proportional to the unnatural in the two circles.

So that the reason why the point further from the centre 20 is moved quicker by the same force, and the greater radius describes the greater circle, is plain from what has been said ; and hence the reason is also clear why larger balances are more accurate than smaller. For the cord by which a balance is suspended acts as the centre, for it is at rest, and the parts of the balance on cither side form the radii. Therefore by the same weight the end of the balance must ${ }_{25}$ necessarily be moved quicker in proportion as it is more distant from the cord, and some weight must be imperceptible to the senses in small balances, but perceptible in large balances; for there is nothing to prevent the 3°
fails. Why is this ? The answer is that the same force moves longer radii quicker than shorter.
${ }^{1} 849^{\mathrm{b}}$ II. Reading with Capelle $\left.\mu \epsilon i\right\} o \nu$ for $\mu \hat{a} \lambda \lambda o \nu_{0}$
${ }^{2} 849^{\circ} 16$. For the triangles BKH and $\mathrm{XZ} \theta$ are similar, having all their sides parallel, each to each.
movement being so small as to be invisible to the eye. Whereas in the large balance the same load makes the movement visible. In some cases the effect is clearly seen in both balances, but much more in the larger on account of the amplitude of the displacement caused by the same 35 load being much greater in the larger balance. And thus dealers in purple, in weighing it, use contrivances with intent to deceive, putting the cord out of centre and pouring lead into one arm of the balance, or using the wood towards the root of a tree for the end towards which they want it to incline, or a knot, if there be one in the wood; for the part of the wood where the root is is heavier, and a knot 850^{a} is a kind of root.

How is it that if the cord is attached to the upper surface $\mathbf{2}$ of the beam of a balance, if one takes away the weight when the balance is depressed on one side, the beam rises again; whereas, if the cord is attached to 5 the lower surface of the beam, it docs not rise but remains in the same position. Is it because, when the cord is attached above, there is more of the beam on one side of the perpendi-

Fig. 5. cular than on the other, the cord being the perpendicular ? In that case the side on which the greater part of the beam is must necessarily sink until the line which divides the 10 beam into two equal parts reaches the actual perpendicular, since the weight now presses on the side of the beam which is elevated.

Let $\mathrm{B} \mathrm{\Gamma}$ be a straight beam, and $\mathrm{A} \Delta$ a cord. If $\mathrm{A} \Delta$ be produced it will form the perpendicular $A \Delta M$. If the portion of the beam towards B be depressed, B will be displaced to E and Γ to Z; and so the line dividing the 15 beam into two halves, which was originally $\Delta \mathrm{M}$, part of
the perpendicular, will become $\Delta \Theta$ when the beam is depressed ; so that the part of the beam EZ which is outside the perpendicular AM will be greater by $\Theta \Pi$ than half the beam. If therefore the weight at E be taken away, Z must sink, because the side towards E is shorter. It has been proved then that when the cord is attached above, if the weight be removed the beam rises again.

But if the support be from below, the contrary takes place. For then the part which is depressed is more than half of the beam, or in other words, more than the part

Fig. 6. marked off by the original perpendicular; it does not therefore rise, when the weight is removed, for the part that is elevated is lighter. Let $N \equiv$ be the beam when horizontal, and KAM the perpendicular dividing $N \equiv$ into two halves. 2_{5} When the weight is placed at N, N will be displaced to O and Ξ to P , and KA to $\Lambda \Theta$, so that $K O^{1}$ is greater than IP^{\prime} by $\Theta \mathrm{AK}$. If the weight, therefore, is removed the beam must necessarily remain in the same position ; for the excess of the part in which OK^{2} is over half the beam acts as a weight and remains depressed.

3 Why is it that, as has been remarked at the beginning 30 of this treatise, ${ }^{3}$ the exercise of little force raises great weights with the help of a lever, in spite of the added weight of the lever; whereas the less heavy a weight is, the easier it is to move, and the weight is less without the lever ? Does the reason lie in the fact that the lever acts like the beam of a balance with the cord attached below and

[^107]3.5 divided into two uneçual parts? The fulcrum, then, takes the place of the cord, for both remain at rest and act as the centre. Now since a longer radius moves more quickly than a shorter one under pressure of an equal weight; and since the lever requires three elements, viz. the fulcrum -corresponding to the cord of a balance and forming the centre-and two weights, that exerted by the person using the lever and the weight which is to be moved ; this being so, as the weight moved is to the weight moving it, so, 850° inversely, is the length of the arm bearing the weight to the length of the arm nearer to the power. The further one is from the fulcrum, the more casily will one raise the weight; the reason being that which has already been stated, ${ }^{1}$ namely, that a longer radius describes a larger circle. So with the exertion of 5 thesameforce themotive weight will change its

Fig. 7. position more than the weight which it moves, because it is further from the fulcrum.

Let AB be a lever, Γ the weight to be lifted, Δ the motive weight, and E the fulcrum ; the position of Δ after it has raised the weight will be II, and that of Γ, the weight raised, will be K .

10 $W_{\text {Hy }}$ is it that those rowers who are amidships move 4 the ship most? Is it because the oar acts as a lever ? The fulcrum then is the thole-pin (for it remains in the same place) ; and the weight is the sea which the oar displaces ; and the power that moves the lever is the rower. The further he who moves a weight is from the fulcrum, the ${ }_{1 s}$ greater is the weight which he moves; for then the radius becomes greater, and the thole-pin acting as the fulcrum is the centre. Now amidships there is more of the oar inside the ship than elsewhere ; for there the ship is widest, so that on both sides a longer portion of the oar can be
${ }^{1} \mathrm{Ch} . \mathrm{s}$.
inside the two walls of the vessel. The ship then moves 20 because, as the blade presses against the sea, the handle of the oar, which is inside the ship, advances forward, and the ship, being firmly attached to the thole-pin, advances with it in the same direction as the handle of the oar. For where the blade displaces most water, there necessarily must the ship be propelled most ; and it displaces ${ }_{25}$ most water where the handle is furthest from the thole-pin. This is why the rowers who are amidships move the ship most ; for it is in the middle of the ship that the length of the oar from the thole-pin inside the ship is greatest.

5 Why is it that the rudder, being small and at the extreme end of the ship, has such power that vessels of great burden can be moved by a small tiller and the strength of one 30 man only gently exerted ? Is it because the rudder, too, is a lever and the steersman works it? The fulcrum then is the point at which the rudder is attached to the ship, and the whole rudder is the lever, and the sea is the weight, and the steersman the moving force. The rudder does not 35 take the sea squarely, as the oar does; for it does not move the ship forward, but diverts it as it moves, taking the sea obliquely. For since, as we saw, the sea is the weight, the rudder pressing in a contrary direction diverts the ship. For the fulcrum turns in a contrary direction to the sea; when the sea turns inwards, the fulcrum turns $85 \mathrm{I}^{\text {a }}$ outwards; and the ship follows it because it is attached to it. The oar pushing the weight squarely, and being itself thrust in turn by it, impels the ship straight forward ; but the rudder, as it has an oblique position, causes an oblique motion one way or the other. It is placed at the stern 5 and not amidships, because it is easiest to move a mass which has to be moved, if it is moved from one extremity. For the fore part travels quickest, because, just as in objects that are travelling along, the movement ceases at the end ; so, too, in any object which is continuous the movement is weakest towards the end, ${ }^{1}$ and if it is weakest in that part ro

[^108]it is easy to check it. For this reason, then, the rudder is placed at the stern, and also because, as there is little motion there, the displacement is much greater at the extremity, since the equal angle stands on a longer base ${ }^{15}$ in proportion as the enclosing lines are longer. ${ }^{1}$ From this it is also plain why the ship advances in the opposite direction more than does the oar-blade ; for the same bulk moved by the same force progresses more in air than in water. For let $A B$ be the oar and Γ the thole-pin, and A the end of the oar inside the ship, and B, that in the sea. ${ }_{20}$ Then if A be moved to Δ, B will not be at E ; for $B E$ is equal to $\mathrm{A} \Delta$, and so B, if it were at E, would have changed its position as much as A,

Fig. 8. whereas it has really, as we saw, traversed a shorter distance. B will therefore be at $Z . \Theta$ then cuts $A B$ not at Γ but below it. For BZ is less than $A \Delta$, so that ΘZ is less than $\Delta \Theta$, for the triangles are similar. ${ }^{2} 5$ The centre Γ will also have been displaced; for it moves in a contrary direction to B , the end of the oar in the sea, and in the same direction as A , the end in the ship, and A changes its position to Δ. So the ship will also change its position, and it advances in the same direction as the handle of the oar. The rudder also acts in the same way, except that, as we saw above, 30 it contributes nothing to the forward motion of the ship, but merely thrusts the stern sideways onc way or the other ;
object the fore part has more motion than the hinder part ; it is perhaps due to a false generalization from the fact that in the case of a horse and cart, the motive power is in front.
${ }^{1} 851^{2}$ I5. Let $a \gamma$ and $\beta \gamma$ be two positions of the boat, a and β being the stern and γ the bow; $a y$ and β_{γ} will be ai $\pi \epsilon \rho ⿺ \epsilon \in \chi o v a a l$ and the angle at $\gamma{ }_{\eta}{ }^{\prime}{ }^{\prime} \sigma \eta \gamma \omega \nu i a$. A force act-
 ing along a β need not be so great as one acting along $\delta \varepsilon$ in order to move the same mass about the apex of the triangle.
for then the bow inclines in the contrary direction. The point where the rudder is attached must be considered, as it were, the centre of the mass which is moved, corresponding to the thole-pin in the case of the oar ; but the middle of the ship moves in the direction to which the tiller is 35 put over. If the steersman puts it inwards, the stern alters its position in that direction, but the bow inclines in the contrary direction; for while the bow remains in the same place, the position of the ship as a whole is altered.

6 Why is it that the higher the yard-arm is raised, the quicker does a vessel travel with the same sail and in the same breeze? ${ }^{1}$ Is it because the mast is a lever, and the 40 socket in which it is fixed, the fulcrum, and the weight $851^{\text {b }}$ which it has to move is the boat, and the motive power is the wind in the sail? If the same power moves the same weight more easily and quickly the further away the fulcrum is, then the yard-arm, being raised higher, brings the sail also further away from the mast-socket, which is the a fulcrum.

7 Why is it that, when sailors wish to keep their course in an unfavourable wind, they draw in the part of the sail which is nearer to the steersman, and, working the sheet, let out the part towards the bows? Is it because the rudder cannot counteract the wind when it is strong, but io can do so when there is only a little wind, and so^{2} they draw in sail? The wind then bears the ship along, while the rudder turns the wind into a favouring breeze, counteracting it and serving as a lever against the sea. The sailors also at the same time contend with the wind by leaning their weight in the opposite direction.

[^109]Why is it that spherical and circular forms are casier 8 to move? A circle can revolve in three different ways: either along its circumference, the centre correspondingly changing its position, as a carriage wheel revolves; or round the centre only, as pulleys move, the centre being 20 at rest ; or it can turn, as does the potter's wheel, parallel to the ground, the centre being at rest. Do not circular forms move quickest, firstly because they have a very slight contact with the ground (like a circle in contact at a single point), and secondly, because there is no friction, for the angle ${ }^{1}$ is well away from the ground ? Further, if they come into collision with another body, they only ${ }^{2} \mathrm{~s}$ are in contact with it again to a very small extent. (If it were a question of a rectilinear body, owing to its sides being straight, it would have a considerable contact with the ground.) Further, he who moves circular objects moves them in a direction to which they have an inclination as regards weight. For when the diameter of the circle is perpendicular to the ground, the circle being in contact 30 with the ground only at one point, the diameter divides the weight equally on either side of it; but as soon as it is set in motion, there is more weight on the side to which it is moved, as though it had an inclination in that direction. ${ }^{2}$ Hence, it is easier for one who pushes it forward to move it ; for it is easier to move any body in a direction to which it inclines, just as it is difficult to move it contrary 35 to its inclination. Some people further assert that the circumference of a circle keeps up a continual motion, just as bodies which are at rest remain so owing to their resistance. ${ }^{3}$

[^110]This can be illustrated by a comparison of larger with smaller circles; larger circles can be moved more readily with an exertion of the same amount of force and move other weights with them, because the angle ${ }^{1}$ of the larger circle as compared with that of the smaller has an inclination which is in the same proportion as the diameter of the one is to the diameter of the other. Now 40 if any circle be taken, there is always a lesser circle than $\mathbf{8 5 2}^{\mathbf{a}}$ which it is greater; for the lesser circles which can be described are infinite in number.

Now if it is the case that one circle has a greater inclination as compared with another circle, and is correspondingly easy to move, then it is also the case that if a circle does not touch the ground with its circumference, but moves either parallel to the ground ${ }^{2}$ or with the motion of a pulley, 5 the circle and the bodies moved by the circle will have a further cause of inclination ; for circular objects of this kind move most easily and move weights ${ }^{3}$ with them. Can it be that this is due to a reason other than that they have only a very slight contact with the ground, and consequently encounter little friction? This reason is that which we have already mentioned, ${ }^{4}$ namely, that the circle is made up of two forms of motion- and so one of them always has an inclination-and those who move a circle io move it when it has, as it were, a motion of its own, when they move it at any point on its circumference. They are moving the circumference when it is already in motion ; for the motive force pushes it in a tangential direction, while the circle itself moves in the motion which takes place along the diameter.

[^111]

How is it that we can move objects more easily and 9 ${ }^{5} 5$ quickly when they are lifted or drawn along by circles of large circumference? Why, for example, are large pulleys more effective than small, and similarly large rollers? Is it because the longer the radius is the further the object is moved in the same time, and so it will do the same also with an equal weight upon it? ${ }^{1}$ Just as we said ${ }^{2}$ that 20 large balances are more accurate than small; for the cord is the centre and the parts of the beam on either side of the cord are the radii.

Why is it that a balance moves more easily without $\mathbf{1 0}$ a weight upon it than with one? So too with a wheel 25 or anything of that nature, the smaller and lighter is easier to move than the heavier and larger. ${ }^{3}$ Is it because that which is heavy is difficult to move not only vertically, but also horizontally? For one can move ${ }^{4}$ a weight with difficulty contrary to its inclination, but easily in the direction of its inclination ; and it does not incline in a horizontal direction.

30 Why is it that it is casier to convey heavy weights on II rollers than on carts, though the latter have large wheels and the former a small circumference? Is it because a weight placed upon rollers encounters no friction, whereas when placed upon a cart it has the axle at which it encounters friction ? For it presses on the axle from above in addition to the horizontal pressure. But an object 35 on rollers is moved at two points on them, where the ground supports them below and where the weight is imposed above; the circle revolves at both these points and is thrust along as it moves.

Why is it that a missile travels further from a sling than $\mathbf{1 2}$ 852^{b} from the hand, although he who casts it has more control over the missile in his hand than when he holds the weight

[^112]suspended ? Further, in the latter case he moves two weights, that of the sling and the missile, while in the former case he moves only the missile. Is it because he who casts the missile does so when it is already in motion in the sling 5 (for he swings it round many times before he lets it go), whereas when cast from the hand it starts from a state of rest ? Now any object is easier to move when it is already in motion than when it is at rest. Or, while this is one reason, is there a further reason, namely, that in using a sling the hand becomes the centre and the sling the radius, and the longer the radius is the more quickly it moves, and so a cast from the hand is short as compared with a cast from a sling ?

I3 Why is it that longer bars are moved more easily than shorter ones round the same capstan, and similarly ${ }^{1}$ lighter ${ }^{2}$ windlasses are moved more casily by the same force than stouter ${ }^{3}$ windlasses ? Is it because the windlass and the capstan form a centre and the outer masses ${ }^{4}$ the radii? For the radii of greater circles are moved more 15 readily and further by the same force than those of lesser circles; for the extremity further from the centre is moved more readily by the same force. Therefore in the case of the capstan they use the bars as a means whereby they turn it more easily ; and in the case of the lighter ${ }^{5}$ windlasses the part outside the central cylinder is more extended, and this portion forms the 20
 radius of the circle.

[^113]Why is it that a piece of wood ${ }^{\mathbf{1}}$ of the same size is more $\mathbf{1 4}$ easily broken against the knee, if one breaks it holding the ends at equal distance from the knee, than if it is held close to the knee? And if one leans a piece of wood upon the ground and places one's foot on it, why does one break it 25 more easily if one grasps it at a distance from the font rather than near it? Is it because in the former case the knee, and in the latter the foot is the centre, and the further an object is from the centre the more easily is it always moved, and that which is to be broken must be moved ?
$W_{\text {hy }}$ is it that the so-called pebbles found on beaches $\mathbf{1 5}$ 30 are round, though they are originally formed from stones and shells which are elongated in shape? Is it because objects whose outer surfaces are far removed from their middle point are borne along more quickly by the movements to which they are subjected ? The middle of such objects acts as the centre and the distance thence to the exterior becomes the radius, and a longer radius always describes a greater circle than a shorter radius when the force which moves them is equal. An object which traverses 35 a greater space in the same time travels more quickly, and objects which travel more quickly from an equal distance strike harder against other objects, and the more they strike the more they are themselves struck. It follows, therefore, that objects in which the distance from the middle to the exterior is greater always become broken, and in this process they must necessarily become round. So in the case of pebbles, because the sea moves and they move with it, the result is that they are always in motion, and, as they roll about, they come into collision with other objects; and it is their extremities which are necessarily most affected.

5
Wiry is it that the longer a plank of wood is, the weaker $\mathbf{1 6}$ it is, and the more it bends when lifted up? Why, for example, does a short thin plank about two cubits long bend less than a thick plank a hundred cubits long ? Is it

[^114]because the length of the plank when it is lifted forms a lever, a weight, and a fulcrum ? The first part of it, then, $1 \circ$ which the hand raises becomes as it were, a fulcrum, and the part towards the end becomes the weight; and so the longer the space is from the fulcrum to the end, the more the plank must bend; for it must necessarily bend more the further away it is from the fulcrum. Therefore ${ }_{15}$ the ends of the lever must be subject to pressure. ${ }^{1}$ If, then, the lever is bent, it must bend more when it is lifted up. This is exactly what happens in the case of long planks of wood; whereas in the case of shorter planks, the extremity is near the fulcrum which is at rest.

17 How is it that great weights and masses can be split and violent pressure be cxerted with a wedge, which is ao

Fig. 9.
a small thing? Is it because the wedge forms two levers working in opposite directions, and each has a weight and fulcrum which presses upwards or downwards? Further, the impetus of the blow causes the weight which strikes the wedge and moves it to be very considerable ; and it has all the more force because by reason of its speed it is 23 moving what is already moving. Although the lever is short, great force accompanics it, and so it causes a much more violent movenent than we should expect from an estimate of its size. Let ABr be the wedge, and $\triangle \mathrm{E} H Z$

[^115]the object which is acted upon by it ; then AB is a lever and the weight is below at P , and the fulcrum is $\mathrm{Z} \Delta$. z_{0} On the opposite side is the lever $\mathrm{B} \mathrm{\Gamma}$. When Ar° is struck it brings both of these into use as levers; for it presses upwards at the point B.

Why is it that if one puts two pulleys on two blocks which $\mathbf{1 8}$ are in opposite positions, and places round them a cord 35 with one end attached to one of the blocks and the other supported by or passed over the pulleys, if one pulls at the end of the cord, one can move great weights, even if the force which draws them is small? Is it because the same weight is raised by less force, if a lever is employed, 853^{b} than by the hand, and the pulley acts in the same way as a lever, so that a single pulley will draw more easily and draw a far heavier weight with a slight pull than the hand alone can ? Two pulleys raise this weight with more than double the velocity; for the second pulley draws a still 5 less weight than if it drew alone by itself, when the rope is passed on to it from the other pulley : for the other pulley makes the weight still less. Thus if the cord is passed through a greater number, the difference is great, even when there are only a few pulleys, so that, if the load under the first weighs four minae, much less is drawn by the last. 10 In building operations they easily move great weights; for they transfer them from one ${ }^{1}$ pulley to another and thence again to windlasses and levers, and this is equivalent to constructing a number of pulleys.

How is it that, if you place a heavy axe on a piece of $\mathbf{1 9}$ 15 wood and put a heavy weight on the top of it, it does not cleave the wood to any considerable extent, whereas, if you lift the axe and strike the wood with it, it does split it, although the axe when it strikes the blow has much less weight upon it than when it is placed on the wood and pressing on it? Is it because the effect is produced entirely by movement, and that which is heavy gets more movement from its weight when it is in motion than when it is

[^116]at rest ? So when it is merely placed on the wood, it does 20 not move with the movement derived from its weight ; but when it is put into motion, it moves with the movement derived from its weight and also with that imparted by the striker. Furthermore, the axe works like a wedge; and a wedge, though small, can split large masses because it is made up of two levers working in opposite directions.

20 WHY is it that steelyards ${ }^{1}$ weigh great weights of meat with ${ }_{25}$ a small counterpoise, the whole forming only a half balance ? For a pan is fixed only at the end where the object weighed is placed, and at the other end there is nothing but the steelyard. Is it because the steclyard is at once a beam and a lever? For it is a beam, inasmuch as each position 30 of the cord becomes the centre of the stcelyard. Now at one end it has a pan, and at the other instead of a pan the counterpoise which is fixed in the beam, just as if one were to place the other pan with the counterpoise in it at the end of the steelyard ; for it is clear that it draws the same weight when it lies in this second pan. But in order that 35 the single beam may act as many beams, many such positions for the cord are situated along a beam of this kind, in each of which the part on the side of the counterpoise forms half the steelyard and acts as the weight, ${ }^{2}$ the positions of the cord being moved through equal intervals, so that one can calculate how much weight is drawn by what lies in the pan, and thus know, when the steelyard $854^{\text {a }}$ is horizontal, how much weight the pan holds for each of the several positions of the cord, as has been explained. In short, this may be regarded as a balance, having one pan in which the object weighed is placed, and the other in which is the weight ${ }^{3}$ of the steelyard, and so the stecl- 5 yard at the other end is the counterpoise. And, since it is as described, it acts as an adjustable balance beam, with

[^117]as many forms as there are positions of the cord. And in all cases, when the cord is nearer the pan and the weight upon it, it draws a greater weight, on account of the whole 10 steelyard being an inverted ${ }^{1}$ lever (for the cord in each position is a fulcrum, although it is above, and the weight is what is in the pan), and the greater the length of the lever from the fulcrum, the more easily it produces motion in the case of the lever, and in the case of the balance causes equilibrium and counterbalances the weight of the steelyard ${ }^{15}$ near the counterpoise.

How is it that dentists extract teeth more casily by $\mathbf{2 I}$ applying the additional weight of a tooth-extractor than with the bare hand only? Is it because the tooth is more inclined to slip in the fingers than from the tooth-ex20 tractor? or does not the iron slip more than the hand and fail to grasp the tooth all round, since the flesh of the fingers being soft both ad-

Fig. io. heres to and fits round the tooth better? The truth is that the tooth-extractor consists of two levers opposed to one another, with the same fulcrum at the point where the pincers join; so they use the instrument to draw teeth, 25 in order to move them more easily.

Let A be one extremity of the tooth-extractor and B the other extremity which draws the tooth, and $A \Delta Z$ one lever and BIE the other, and $\Gamma \Theta A$ the fulcrum, and let the tooth, which is the weight to be lifted, be at the point I , where the two levers meet. The dentist holds and moves the zo tooth at the same time with B and Z; and when he has moved it, he can take it out more easily with his fingers than with the instrument.

Why is it that men easily crack nuts, without striking 22

[^118]a blow upon them, in the instruments made for this purpose? For with nut-crackers much power is lost, namely, that of motion and violent impetus. ${ }^{1}$ Further, if one crushes them with a hard and heavy instrument, one can crack them 35 much more quickly than with a light wooden instrument. Is it because the nut is crushed on two of its sides by two levers, and bodies can easily be rent asunder with a lever ? For the nut-cracker consists of two levers, with the same fulcrum, namely, A, their point of connexion. As, there- $854^{\text {b }}$ fore, E and Z would have been easily moved by a small force if they had been pushed apart, so they are easily brought together, the levers being moved at the points Δ and $\Gamma .{ }^{2}$ So $E \Gamma$ and $\mathrm{Z} \Delta$ being levers exert the same or even greater force than that which the weight exerted

Fig. if.
when the nut was cracked by a blow ; for when weight is 5 put ${ }^{3}$ upon the levers they move in opposite directions and compress and break the object at \mathbf{K}. For this very reason, too, the nearer K is to A, the sooner it is subjected to pressure; for the further the lever extends from the fulcrum, the more easily and more powerfully does it move an object with the exercise of the same force. A, then, is the fulcrum, and $\triangle A Z$ and ГAE are the levers. The nearer, therefore, K is to the angle at A, the nearer it is 10 to the point where the levers are connected, ${ }^{4}$ and this is the fulcrum. So with the same force bringing them together, Z and E must be subjected to more weight;

[^119]and so, when weight is exerted from two contrary directions, more compression must take place, and the more an object ${ }_{15}$ is compressed, the sooner it breaks.

Why is it that in a rhombus, when the points at the $\mathbf{2 3}$ extremities are moved in two movements, they do not describe equal straight lines, but one of them a much longer line than the other? Further (and this is the same question), why does the point [A] moving along the side [AB] 20 describe a resultant line $[\mathrm{A} \Delta]$ less than the side? For the point describes the diagonal, the shorter distance, and the line $[\mathrm{AB}]$ moves along the side [Ar$]$, the longer distance; and yet the line has but one movement, and the point two movements. ${ }^{1}$

For let A move along $A B$ to B, and B to A with the same velocity; and let the line $A B$ move along $A \Gamma$ parallel to

Fig. 12.
${ }_{25} \Gamma \Delta$ with the same velocity. Then the point A must move along the diagonal $\mathrm{A} \Delta$, and B along $\mathrm{B} \mathrm{\Gamma}$; and both must describe these diagonals simultaneously, while $A B$ moves along the side $A \Gamma$.

For let A be moved the distance AE, and the line AB, the distance AZ, and let ZH be drawn parallel to A13, and a line drawn from E to complete the parallelogram $[A Z \Theta E]$. The small parallelogram then thus formed is similar to the 30 whole parallelogram. Thus AZ equals AE, so that A has been moved along the side AE [to E], while the line AB would be moved the distance $A Z$. Thus A will be on the diagonal at Θ, and so must always move along the diagonal ; and [in the whole parallelogram] the side AB will

[^120]describe the side $A \Gamma$, and the point A the diagonal $A \Delta 35$ simultaneously. In the same way it may be proved that B moves along the diagonal $\mathrm{B} \Gamma, \mathrm{BE}$ being equal to BH . For, if the parallelogram be completed by drawing a line from H , the interior parallelogram [E@HB] will be similar to the whole parallelogram; and B will be on the diagonal at the point where the sides meet ; and the side [BA] will describe $855^{\text {a }}$ the side $\left[\mathrm{Al}^{\circ}\right]$; and the point B describes the diagonal $\mathrm{B} \mathrm{\Gamma}$.

At the same time then B will describe a line [BF] which is much longer than $A B$, and the side $[A B]$ will pass along the side [A「] which is shorter [than the diagonal], though the velocity is the same, in the same time (and the side [AB] has moved further than A , though it is moved by only one 5 movement). For as the rhombus becomes more acute [at 13 and $\Gamma], A \Delta$ becomes the lesser diagonal and $B \Gamma$ greater, and the side $[A B]$ less than $B \Gamma$. For it is strange, as has been remarked, that in some cases a point moved by two movements travels more slowly than a point moved by one, and that, while both the given points have equal velocity, either one of them describes a greater line.

The reason is that, when a point moves from an obtuse to angle, the sides are in almost opposite directions, namely, that in which the point itself ${ }^{1}$ is moved and that in which it is moved down ${ }^{2}$ by the side ; but when it moves from an acute angle, it moves, as it were, in actual fact towards the same position. For the angle of the sides contributes to increase the speed of the diagonal ; and in proportion as one makes the one angle more acute and the other $\mathbf{1}_{5}$ more obtuse, the movement is slower or quicker. For the sides are brought into more opposite direction by the angle becoming more obtuse; but they are brought into the same direction by the sides being brought nearer together. For B moves in practically the same direction in virtue of both its movements; thus one contributes 20 to assist the other, and more so, the more acute the angle becomes. And the reverse is the case with A;

[^121]for it itself moves towards B , while the movement of the side [AB] brings it down to Δ; and the more obtuse the angle is, the more opposite will the movements be; for 25 the two sides become more like a straight line. If they became actually a straight line, the components would be absolutely in opposite directions. But the side, being moved in one direction only, is interfered with by nothing. ${ }^{1}$ In that case it naturally moves through a longer distance.

There is a question why a large circle traces out a path $\mathbf{2 4}$ equal to that of a smaller circle, when they are placed about 30 the same centre, ${ }^{2}$ but when they are rolled separately, ${ }^{3}$ their paths are to one another in the proportion of their dimensions. And, further, the centre of both being one and the same, at one time the path which they trace is of the same length as the smaller traces out alone, and at another time of the length which the larger circle traces. ${ }^{4}$ 35 Now it is manifest that the larger circle traces out the longer path. For by mere observation it is plain that the angle which the circumference of each makes with its own diameter is greater in the case of the larger circle than in the smaller; ${ }^{5}$ so that, by observation, the paths along $855^{\text {b }}$ which they roll will have this same proportion to one

[^122]
a 's final position will be that from which he started, β will have moved from β^{1} to β^{2}.
${ }^{2} 855^{\circ} 30$. Four cases are considered: (1) when the two circles are rolled along a horizontal plane independently, (2) when they are fixed together and rolled along a plane HK, the tangent to the small circle, (3) when they are fixed together and rolled along a plane $Z \Lambda$, the tangent to the larger circle, (4) when they have the same centre (or axle), but move independently. Cases (2) and (3) are referred to here.
${ }^{3} 855^{\text {a }} 3$ I. i.e. as in case (1).
${ }^{4} 855^{2} 35$. i.e. as in cases (2) and (3).
${ }^{5} 855^{\text {a }} 36$. i.e. the angle AZF is greater than the angle AHB, cf. $851^{\text {b }} 38$ and note.
another. But, in fact, it is manifest that, when they are situated about the same centre, this is not so, but they trace out an equal path; so that it comes to this, that in the one case the path is equal to that traced by the larger circle, in the other to that traced by the smaller.

Let $\Delta Z \Gamma$ be the greater circle, EIIB the lesser, A the common centre, ZI the path along which the greater circle moves by its own motion, ${ }^{1}$ and HK the path of the smaller circle by its own motion, equal to $\mathrm{Z} \Lambda$.

Fig. ${ }^{13}$.
When, then, I move the smaller circle, ${ }^{2}$ I move the same centre A ; and now let the large circle be fixed to it. When- 10 ever, therefore, AB becomes perpendicular to HK [at K], $\mathrm{A} \Gamma$ at the same time becomes perpendicular to ZA [at A] ; so that they will always have traversed an equal distance, HK representing the $\operatorname{arc} \mathrm{HB}$, and ZA representing the arc $Z \Gamma$. And if one quadrant traces an equal path, it is plain that the whole circle will trace out a path equal to I_{5} that of the other whole circle; so that whenever the line HB comes to K , the arc $\mathrm{Z} \Gamma$ will move along ZA ; and the same is the case with the whole circle after one revolution.

In like manner if I roll the large circle, ${ }^{3}$ fastening the

[^123]smaller circle to it, about the same centre, AB will be perpendicular and vertical at the same time as $А \Gamma$, the latter 20 to ZI [at I], the former to $\mathrm{H} \Theta$ [at Θ]. So that, whenever the one [HB] shall have traversed a distance equal to $\mathrm{H} \Theta$ and the other $[\mathrm{Zr}]$ a distance equal to ZI , and ZA again becomes perpendicular to ZA and AH to HK , they will be in their original position at the points Θ and I. And, since there is no halting of the greater for the lesser, so as 25 to be at rest during an interval at the same point (for in both cases both are moved continuously), nor does the lesser skip any point, it is strange that in one case the greater should traverse a distance equal to that traversed by the lesser, and in the other case the lesser a distance equal to that traversed by the greater. And, further, it is wonderful that, though there is always only one movement, the centre that is moved should be rolled forward in one case so a great and in another a less distance. For the same thing moved at the same velocity naturally traverses an equal distance ; and to move a thing at the same velocity is to move it an equal distance in both cases.

As to the reason, this may be taken as a principle, that the same, or an equal force, moves one mass more slowly and the other more quickly.

Suppose that there is a body which is not naturally 35 in motion of itself ; if another body which is naturally in motion move it and itself as well, it will be moved more slowly than if it were being moved by its own motion alone; and if it be naturally in motion and nothing is moved with it, the same is the case. So it is quite impossible for any body to be moved more than that which moves it ; for it is not moved according to any rate of motion of its 856^{a} own, but at the rate of that which moves it.

Let there be two circles, a greater A and a lesser 13. If the lesser were to push along the greater, when the greater is not rolling along, it is plain that the greater will traverse so much distance as it has been pushed by the lesser. And it 5 has been pushed the same distance as the small circle has moved ; so that they have both traversed an equal straight line. Necessarily, therefore, if the lesser be rolling while it
pushes the greatcr, the latter will be rolled, as well as pushed, just so far as the lesser has been rolled, if the greater have no motion of its own; for in the same way and so far as the moving body moves it, so far must the body which is moved be moved thereby. So, indeed, the lesser ${ }^{1}$ circle го has moved the greater so far and in such a way, ${ }^{2}$ viz., in a circle-say one foot, for let that be the extent of the movement-and consequently the larger circle has moved that distance.

So too, if the large circle move the lesser, the lesser circle will have been moved just as far as the large circle, in whatever way ${ }^{3}$ the latter be moved, whether quickly or I_{5} slowly, by its own motion; and the lesser circle will trace out a line at the same velocity and of the same length as the greater traced out by its natural movement. And this is just what causes the difficulty, that they do not act any longer when they are joined together in the same way as they acted when they were not connected; that is to say, when one is moved by the other not according to its natural motion, nor according to its own motion. 20 For it makes no difference whether one is fixed round the other or fitted inside it, or placed in contact with it ; for in all these cases, when one moves and the other is moved by it, the one will be moved just so far as the other moves it.

Now when one moves a circle by means of another circle in contact with it, or suspended from it, one does not revolve it continuously ; ${ }^{4}$ but if one places them about the same centre, the one must be continuously revolved 2_{5} by the other. But nevertheless, the former is not moved in accordance with its own motion, but just as if it had no proper motion ; and if it has a proper motion, but docs not make use of it, it comes to the same thing.

Whenever, therefore, the large circle moves the small circle affixed to it, the small circle moves the same distance

[^124]3_{0} as the large, and vice versa. But when they are separate each has its own motion. ${ }^{1}$

If any one raises the difficulty that, when the centre is the same and is moving the two circles with cqual velocity, they trace out unequal paths, he is reasoning falsely and sophistically. For the centre is, indeed, the same for both, but only accidentally, just as the same 35 thing may chance to be 'musical' and 'white '; for to be the centre of each of the circles is not the same for it in the two cases.

In conclusion, when it is the smaller circle that moves the greater, the centre and source of motion is to be regarded as belonging to the smaller circle; but when the greater circle moves the lesser, it is to be regarded as belonging to the greater circle. Thus the source of motion is not the same absolutely, though it is in a sense the same.

Why do they construct beds so that one dimension is $\mathbf{2 5}$ $856^{\text {b }}$ double the other, one side being six feet long or a little more, the other three feet? And why do they not stretch bed-ropes diagonally? Do they make them of this size so as to fit the body? Thus they have one side twice the length of the other, being four cubits long and two cubits wide.
5 The ropes are not stretched diagonally but from side to side, so that the wooden frame may be less likely to break; for wood can be cleft most easily if split thus in the natural way, ${ }^{2}$ and when there is a pull upon it, it is subject to a considerable strain. Further, since the ropes have to be able to bear a weight, there will be less of a strain when 1o the weight is put upon them if they are strung crosswise rather than diagonally. Again, less rope ${ }^{3}$ is used up by this method.

[^125]Let AZHI be a bed, and let ZH be divided into two equal parts at B. There is an equal number of holes in ZB and ZA ; for the sides are equal, ${ }^{1}$ each to each, for the whole side ZH is double the side ZA . They stretch the rope on r_{5} the method already mentioned from A to B , then to Γ, Δ, Θ, and E, and so on until they turn back and reach another angle; for the two ends of the rope ${ }^{2}$ come at two different angles. ${ }^{3}$

Now the parts of the rope which form the bends are equal, e.g. AB, Br are equal to

Fig. I4. $\Gamma \Delta, \Delta \Theta$-and so with other similar pairs of sides, for the same demonstration holds good 20 in all cases. ${ }^{4}$ [For $A B$ is equal to $\mathrm{E} \Theta$; for the opposite sides of the parallelogram BHKA are equal, and the holes are an cqual distance apart from one another. And BH is equal to KA ; for the angle at B is equal to the angle at H (for the exterior angle of a parallelogram is equal to the interior opposite angle) ; and the angle at B is half a right ${ }_{25}$ angle, for ZB is equal to ZA , and the angle at Z is a right angle. And the angle at B is equal to the angle at H ; for the angle at Z is a right angle, since the bed is a rectangular figure, one side of which is double the other, and

[^126]divided into two equal parts; so that $\mathrm{B} \Gamma$ is equal to EH , 3_{0} as also is $K \Theta$; for it is parallel. So that $B \Gamma$ is equal to $K \Theta$, and ΓE to $\Delta \Theta$. In like manner it can be demonstrated that all the other pairs of sides which form the bends of the rope are equal to one another. So that clearly there are four such lengths of rope as $A B$ in the bed; and there is half the number of holes in the half ZB that there is in
35 the whole ZH. ${ }^{1}$ So that in the half of the bed there are lengths of rope, such as $A B$, and they are of the same number as there are holes in BH, or, what comes to the same thing, in $A Z, Z B$ together. But if the rope be strung $857^{\text {a }}$ diagonally, as in the bed $\mathrm{AB} \mathrm{\Gamma} \Delta,{ }^{2}$ the halves are not of the same length as the sides of both, AZ and ZH ; but they are of the same number ${ }^{3}$ as the holes in ZB, ZA. But $A Z, Z B$, being two, are greater than $A B$, so that the rope is longer by the amount by which the two sides taken together are greater than the diagonal.]

5 Why is it more difficult to carry a long plank of wood on 26 the shoulder if one holds it at the end than if it is held in the middle, though the weight is the same? Is it because, as the plank vibrates, the end prevents one from carrying it, because it tends to interrupt one's progress by its vibration? No, for if it does not bend at all and is not very long, it is 10 nevertheless more difficult to carry if it is held at the end. It is easier to carry if one holds it in the middle rather than at the end, for the same reason for which it is easier to lift in that way. The reason is that, if one lifts it in the middle, the two ends always lighten one another, and one side lifts the other side up. For the middle, where the lifter or carrier holds it, forms, as it were, the centre, and cach 15 of the two ends inclining downwards raises up and lightens

${ }^{1} 856^{b} 35-857^{a}$ 4. These lines seem more hopelessly corrupt and unintelligible than those preceding them.
${ }^{2} 856^{\text {b }} 39$. A figure, apparently, in which the rope is strung along the diagonals $A \Gamma$ and $B \Delta$ and parallel to them on either side.
${ }^{3} 857^{\text {a }}$ 2. Reading with Capelle тобаиิта for тà $\grave{\imath} \sigma a$, cf. $856^{b} 36$.
the other end ; whereas if it is lifted or carried from one end, this effect is not produced, but all the weight inclines in one direction. Let A be the middle of a plank which is raised or carried, and let B and

Fig. 15. Γ be the extremities. When the plank is lifted or carried at the point A, B inclines downwards and raises Γ up, and Γ inclines downwards 20 and raises B up; the effect is produced by their being raised up at the same moment.

27 Why is a very long object more difficult to carry on the shoulder, even if one carries it in the middle, than a shorter object of the same weight? In the last case we said that the vibration was not the reason; in this case it is the 25 reason. For the longer an object is, the more its extremities vibrate, and so it would be more difficult for the man to carry it. The reason of the

Fig. 16. increased vibration is that, though the movement is the same, the extremities change their position more the longer the piece of wood is. Let the shoulder, which is the centre 30 (for it is at rest), be at A, and let $A B$ and $A \Gamma$ be the radii ; then the longer the radius AB , or $\mathrm{A} \Gamma$ is, the greater is the amplitude of movement. This point has already been demonstrated. ${ }^{1}$

28 Why do they construct 'swipes ' by the side of wells by attaching the lead as a weight at the end of the bar, the 35 bucket being itself a weight, whether it is empty or full? Is the reason that, the drawing of water being divided into two operations distinct in time (for the bucket has to be dipped and then drawn up), it is an easy task to let it down when it is empty, but difficult to raise it when it is full? It is therefore of advantage to lower it rather more $857^{\text {b }}$ slowly with a view to lightening the weight considerably

[^127]when it is drawn up again. This effect is produced by the lead or stone attached to the end of the swipe. In letting 5 it down there is a heavier weight to lift than if one has merely to lower the empty bucket; but when it is full, the lead, or whatever the weight attached is, helps to draw it up; and so the two operations taken together are easier than on the other method.

Why is it that when two men are carrying an cqual 29 io weight on a piece of wood or something of the kind, the pressure on them is not equal unless the weight is in the middle, but it presses more on the person carrying it to whom it is nearest? Is it because the wood, when they hold it in this way, becomes a lever, and the load forms the fulcrum, and the carrier nearer to the load becomes the weight which is to be moved, while the other carrier ${ }^{5} 5$ becomes the mover of the weight? The further the latter is from the weight, the more easily he moves it, and the more he presses down the other man, since the load placed on the wood and acting as a fulcrum, as it were, offers resistance. But if the load is placed in the middle, one carrier does not act as a weight on the other any more 20 than the other on him, or exercise any motive force upon him, but each is equally a weight upon the other.

Why is it that when pcople rise from a sitting position, 30 they always do so by making an acute angle between the thigh and the lower leg and between the chest and the thigh, otherwise they cannot rise? Is it because equality 2_{5} is always a cause of rest, and a right angle causes an equality ${ }^{1}$ and so causes equilibrium? So in rising a man moves towards a position at equal angles to the earth's circumference; for it is not the case that he will actually be at right angles to the ground. Or is it because when a man rises he tends to become upright, and a man who is standing must be perpendicular to the ground ? If, then, he is to

[^128]be at right angles to the ground, that means that he must have his head in the same line as his feet, and this occurs 30 when he is rising. As long, then, as he is sitting, he keeps his feet and head parallel to one another and not in the same straight line. Let A be the head,

Fig. 17. $A B$ the line of the chest, $B \Gamma$ the thigh, and $\Gamma \Delta$ the lower leg. Then $A B$, the line of the chest, is at right angles to the thigh, and the thigh at right angles to the lower leg, when a man is seated in this way. In 35 this position, then, a man cannot rise ; but to do so he must bend the leg and place the feet at a point under the head. This will be the case if $\Gamma \Delta$ be moved to FZ, and the result will be that he can rise immediately, and he will have his head and his feet in 858^{a} the same straight line ${ }^{1}$ and ΓZ will form an acute angle with $\mathrm{B} \mathrm{\Gamma}$.

Why is it that a body which is already in motion is easier to move than one which is at rest? For example, a wagon which is in motion can be propelled more quickly than 5_{5} one which has to be started. Is it because, in the first place, it is very difficult to move in one direction a weight which is already moving in the opposite direction? For though the motive force may be much quicker, yet some of it is lost; for the propulsion exerted by that which is being pushed in the opposite direction must necessarily become slower. And so, secondly, the propulsion must be slower if the body is at rest; for even that which is at rest offers resistance. When a body is moving in the same direction as that which pushes it, the effect is just io as if one increased the force and speed of the motive power ; for by moving forward it produces of itself exactly the effect which that power would have upon it.

32 Why is it that an object which is thrown eventually comes to a standstill? Does it stop when the force which

[^129]started it fails, or because the object is drawn in a contrary 15 direction, or is it due to its downward tendency, which is stronger than the force which threw it? Or is it absurd to discuss such questions, while the principle escapes us?

How is it that a body is carried along by a motion not 33 its own, if that which started it does not keep following and pushing it along ? Is it not clear that in the beginning the impelling force so acted as to push one thing along, and this in its turn pushes along something else ? ${ }^{1}$ The moving body comes to a standstill when the force which 20 pushes it along can no longer so act as to push it, and when the weight of the moving object has a stronger inclination dlownwards than the forward force of that which pushes it.

Why is it that neither small nor large bodies travel 34 ${ }_{25}$ far when thrown, but they must have due relation to the person who throws them? Is it because that which is thrown or pushed must offer resistance to that from which it is pushed, and whatever does not yield owing to its mass, or does not resist owing to its weakness, does not admit of being thrown or pushed? A body, then, which is far beyond the force which tries to push it, does not yield at all; while that which is far weaker offers no resistance. ${ }_{30}$ Or is it because that which travels along does so only as far as it moves the air to its depths, and that which is 858^{b} not moved cannot itself move anything either ? Both these things are the case here ; that which is very large and that which is very small must be looked upon as not moving at all ; for the latter does not move anything, while the former is not itself at all moved.

5 WHY is it that an object which is carried round in whirling 35 water is always eventually carried into the middle ? Is it because the object has magnitude, so that it has position in two circles, one of its extremities revolving in a greater and the other in a lesser circle? The greater circle, then,
${ }^{1} 858^{\text {a }}$ I9. i.e. the air or other medium in which the motion is taking place: cf. below, 30, 31 .
on account of its greater velocity, draws it round and thrusts it sideways into the lesser circle; but since the object io has breadth, the lesser circle in its turn does the same thing and thrusts it into the next interior circle, until it reaches the centre. Here the object remains because it stands in the same relation to all the circles, being in the middle; for the middle is equidistant from the circumference in the case of each of the circles. Or is it because an object which, owing to its magnitude, the motion of the whirling water I_{5} cannot overcome, but which by its weight prevails over the velocity of the revolving circle, must necessarily be left behind and travel along more slowly? Now the lesser circle travels more slowly-for the greater and the lesser circle do not ${ }^{1}$ revolve over the same space in an equal time when they move round the same centre-and so the object must be left revolving in a lesser and lesser circle 20 until it reaches the middle. If the force of the whirling water prevails at first, it will go on doing so to the end; for one circle must prevail and then the next over the weight of the object owing to their velocity, so that the whole object is continually being left behind in the next circle towards the centre. For an object over which the 2_{5} water does not prevail must be carried cither inwards or outwards. Such an object cannot then be carried along in its original position ; still less can it be carried along in the outer circle, for the velocity of the outer circle is greater. The only alternative is that the object over which the water does not prevail is transferred to the inner circle. Now every object has a tendency to resist force; but since the 3° arrival at the middle puts an end to motion, and the centre alone is at rest, all objects must necessarily collect there.

[^130]
DE LINEIS
 INSECABILIBUS

BY
HAROLD H. JOACHIM

FELLOW OF MERTON COLLEGF.

OXFORD
AT THE CLARENDON PRESS
1908

HENRY FROWDE, M.A.
PUBLISHER TO THE UNIVERSITY OF OXFORD
LONDON, EDINBURGH
NEW YORK AND TORONTO

INTRODUCTORY NOTE

 Text of Aristotle, is to a large extent unintelligible. But M. Hayduck, in the valuable paper which he contributed to the . Iowi Falu-biicher fiur Philologie und Padagogik (vol. 109, part I, Teubner, 1874), prepared the way ; and Otto Apelt, profiting by Hayduck's labours and by a fresh collation of the manuscripts, published a more satisfactory text in his volume Aristotelis quae foruntur de Plantis, \&c. (Teubner, 1888). Many of the most difficult passages are discussed and elucidated in the prolegomena to this volume. Finally, Apelt included a German translation of the treatise in his Beiträge sur Geschichte der gricchischen Philosophie (Teubner, 1891).

In the following paraphrase, I have endeavoured to make a full use of the work of Hayduck and Apelt, with a view to reproducing the subtle and somewhat intricate thought of the author, whoever he may have been. Though the treatise is published amongst the works of Aristotle, there are grounds for ascribing it to Theophrastus: whilst, for all we can tell, it may have been written neither by Aristotle nor by Theophrastus, but by Strato, or possibly by some one otherwise unknown. But the work-no matter who wrote it-is intercsting for the close texture of its reasoning, and for the light which it throws on certain obscure places in Plato and Aristotle. Its value for the student of the History of Mathematics is no doubt considerable : but my own ignorance of this subject makes me hesitate to express an opinion.

I take this opportunity of thanking three of my friends, E. I. Carlyle (Fellow of Lincoln College) and A. L. Dixon (Fellow of Merton College) for their help in several of the mathematical passages, and IV. D. Ross (Fellow of Oricl College) for his valuable suggestions, most of which I have adopted.
H. H. J.

January, 1908.

CONCERNING INDIVISIBLE LINES

Are there indivisible lines? And, generally, is there a simple unit in every class of quanta ? ${ }^{1}$
§ I. Some people maintain this thesis on the following grounds:-
(i) If we recognize the validity of the predicates 'big' and 'great', we must equally recognize the validity of their opposites, 'little' and 'small'. Now that which admits practically an infinite number of divisions, is 'big' not 'little' 〈or 'great' not 'small' $\rangle.{ }^{2}$ Hence, the 'little' quantum and the ${ }_{5}$ 'small' quantum will clearly admit only a finite number of divisions. ${ }^{3}$ But if the divisions are finite in number, there must be a simple magnitude. Hence in all classes of quanta there will be found a simple unit, since in all of them the predicates 'little' and 'small' apply.
 that in dividing any quantum, of whatever kind, you will ultimately come to indivisible constituent quanta of the same kind. Every line, e.g., is composed of a finite number of indivisible lines: every solid of a finite number of indivisible solid constituents, i.e. solids not further divisible into solids. The advocates of this theory were feeling after the conception on which the differential calculus was based, and I presume that in the history of Mathematics they would take their place as the forerunners of Newton and Leibniz. Cf. Hegel, Wissenschaft der Logik, vol. i. pp. 302-4.
 'simple'-in opposition to 'complex' or 'composite'-as equivalent to ' without parts'.
${ }^{2}{ }^{2} 4$ ff. Tò $\pi o \lambda \dot{v}$ and tò odizoy-that which contains many, and that which contains few, units-are the opposite predicates of discrete quanta, i.e. of Number (cf. Arist. Met. $992^{\text {a }}$ 16, 17) : тò μ '́ γ a and $\tau \grave{o} \mu \kappa \kappa o ́ \nu$ apply to continuous quanta. This at least seems to hold of the primary signification of these terms ; but the distinction is not maintained. Thus, e.g., in the Categ. $4^{\text {b }} 20 \mathrm{ff}$., Number is instanced as a discrete quantum, Time and Surface are quoted inter alia as continuous quanta; but modús is predicated of Surface ($5^{b} 2$), and of Time ($5^{\text {b }} 3$). I have added (or 'great' not 'small'> in my translation, to complete the writer's thought. I do not suggest that there is an omission in the text.
 though at times the meaning of the Greek passes into 'contains divisions': cf., e.g., $969^{\text {a }} 8$.
(ii) Again, if there is an Idea of line, and if the Idea is first of the things called by its name ${ }^{1}$:-then, since the parts are by nature prior to their whole, the Ideal Line must be indivisible. ${ }^{2}$ And, on the same principle, the Ideal Square, the Ideal Triangle, and all the other Ideal Figures-and, generalizing, the Ideal Plane and the Ideal Solid-must be without parts: for otherwise it will result that there are elements prior to each of them.
${ }^{1} 4$
(iii) Again, if Body consists of elements, ${ }^{3}$ and if there is nothing prior to the elements, Fire and, generally, each of the elements which are the constituents of Body must be indivisible : for the parts are prior to their whole. Hence there must be a simple unit in the objects of sense as well as in the objects of thought. ${ }^{4}$

[^131](iv) Again, Zeno's argument proves that there must be 18 simple magnitudes. ${ }^{1}$ For the body, which is moving along a line, must reach the half-way point before it reaches the end. And since there always is a half-way point in any 'stretch' which is not simple, motion-unless there be simple magnitudes-involves that the moving body touches succes- 20 sively one-by-one an infinite number of points in a finite time: which is impossible. ${ }^{?}$

But even if the body, which is moving along the line, does touch the infinity of points in a finite time, an absurdity results. For since the quicker the movement of the moving body, the greater the 'stretch ' which it traverses in an equal time: and since the movement of thought is quickest of all 25 movements:-it follows that thought too will come successively into contact with an infinity of objects in a finite time. $968^{\text {b }}$ And since 'thought's coming into contact with objects one-by-one' is counting, we must admit that it is possible to count the units of an infinite sum in a finite time. But since this is impossible, there must be such a thing as an 'indivisible line'. ${ }^{3}$
popular view, which regarded Earth, Air, Fire, and Water as the 'Letters' of the Alphabet of Reality, and the physical universe as a complex of 'Syllables' and 'Words' in which these four Letters are variously combined. But the principle of the argument would apply to the more refined forms which the theory assumes in the Timaeus of Plato and in Aristotle's physical writings. The primordial triangles of the Timaeus, quâ Elements of all bodies, are presumably without physical parts, i.e. physically indivisible. And the Earth, Air, Fire, and Water, which (according to Aristotle) are the chemical constituents of all $\delta \mu o t o \mu \epsilon \rho \hat{\eta}$-and therefore the primary constituents of all composite bodies-, are ' $\tau \grave{a}$ á $\pi \lambda \hat{\alpha} \sigma \dot{\omega} \mu a \tau a$ ', although the character of each of them is dual, i.e. is exhibited in two of the four fundamental qualities. (For Aristotle's theory of the Elements, cf. my article on 'Aristotle's Conception of Chemical Combination', Journal of Philology, No. 57.)
 a simple magnitude. For Zeno's argument cf. Arist. Phys, $187^{a} 1$ and Simplicius ad loc.
${ }^{2} \mathbf{a}_{1} 8-23$. Here and elsewhere I have not scrupled to paraphrase rather freely, in order to bring out the argument. From the infinite divisibility of the continuous path of the moving body, Zeno concluded that motion was impossible; for the moving body would have to come successively into contact with an infinite number of points in a finite time. The advocates of 'simple units' argue that, since motion is a fact, the continuous path cannot be divisible ad infinitum: i.e. any given line must coisist of a finite number of 'indivisible lines'.

(v) Again, the being of 'indivisible lines' (it is maintained) follows from the Mathematicians' own statements. For if we accept their definition of 'commensurate' lines as those which are measured by the same unit of measurement, ${ }^{1}$ and if we suppose that all commensurate lines actually are being measured, ${ }^{2}$ there will be some actual length, by which all of them will be measured. ${ }^{3}$ And this length must be indivisible. For if it is divisible, its parts-since they are commensurate with the whole-will involve some unit of measurement 10 measuring both them and their whole. And thus the original
$968^{\text {b }} 5$: cf. also $968^{\text {a }} 19$) cannot be given by the English 'there must be an indivisible line' or 'a line which is indivisible'. We must translate either as above, or by the plural 'there must be indivisible lines'.

The argument $\left({ }^{(a} 3^{-b} 4\right)$ is directed against a particular view of thought and of counting. 'Assume'--the writer says in effect-' that the moving body does in fact touch an infinity of points one-by-one in a finite time. According to your view that thought is the quickest of all movements, it will follow a fortiori that thought touches an infinity of objects one-by-one in a finite time: i.e. (according to your definition of counting) that we can count an infinite number in a finite time. But this is impossible. And the only way to avoid this absurdity, whilst recognizing the fact of motion, is to postulate "indivisible lines",

The theory that thinking is a movement of the Soul was not held by Aristotle: for he argues in the de Anima (A. ch. 3) against all attempts to define the Soul as 'that which moves itself,' and maintains that 'it is impossible that movement should be a property of the Soul' (l. c. $406^{\mathrm{a}} 2 \mathrm{ff}$.). Certain speculations of Plato in the Timaeus (which Aristotle criticizes, l. c. $406^{\mathrm{b}} 26 \mathrm{ff}$.) regard thought as a movement : and Theophrastus and his pupil, Strato, are known to have maintained that thought was a movement of the Soul (cf. Apelt, Beiträge \&c., p. 270). But we must not infer-as Apelt (l.c.) does-that Aristotle is not the author of the present treatise : still less that it was written by Theophrastus or Strato. For we are here dealing with an argumentum ad hominem, and the writer is not himself committed to the view that thought is a movement of the Soul.

 $\sigma \dot{v} \mu \mu \epsilon \rho \circ$. But in his translation he reverts to the best attested reading.

I substitute a comma for Bekker's colon after $\mu \epsilon \tau \rho о \dot{\mu} \mu \in \nu a t$ in 1.6, because the whole clause is dependent on ϵi. The logic of the passage is, ' If we accept x, and combine with that the supposition y, there must be indivisible lines: for on those suppositions there will be a unit length which must be indivisible.'
${ }^{\text {s }}$ b8. థ π âбat $\mu \epsilon \tau \rho \eta$ Ө́бovtat, 'whereby all commensurate lines will be measured': but, as appears from $969^{\mathrm{b}} 10-12$, the argument (by a somewhat transparent fallacy) regarded all lines as 'commensurate'. See next note.
unit of measurement would turn out to be twice one of its parts, viz. twice its half. ${ }^{1}$ But since this is impossible, there must be an indivisible unit of measurement. ${ }^{2}$ And just as all the lines, which are compounded of the unit, are composed of 'simples', so also the lines, which the unit measures once, consist of 'simples '. ${ }^{3}$

And the same can be shown to follow in the plane figures too. For all the squares, which are drawn on the rational ${ }_{15}$ lines, are commensurate with one another ; and therefore <by the preceding argument) their unit of measurement will be simple. ${ }^{4}$
 [$\delta \iota \pi \lambda a \sigma i a \nu$ rc $\left.\mathrm{N}, \delta_{i} \pi \lambda a \sigma_{\iota} \nu \mathrm{LW}^{\mathrm{a}}\right]$ тij $\dot{\eta \mu i \sigma \epsilon \iota a v, ~ . ~ . ~ . ~ F r o m ~ t h e ~ r e a d i n g ~ o f ~}$ L^{2}, I suspect that the author wrote $\delta i \pi \lambda a \sigma i \omega \nu$ (cf. e.g. Euclid, Elements, Bk. X, prop. 9: the word occurs in [Arist.] Probl. $923^{\text {a }} 3$, De Mundo, 399^{a} 9). In place of $\tau \dot{\eta} \nu \quad \eta \dot{\eta} \mu \sigma \epsilon t a \nu, \mathrm{Z}^{\mathrm{a}}$ apparently (' ut videtur', Apelt says in his apparatus criticus) reads rîs $\dot{\eta} \mu i \sigma v o s . ~ H a y d u c k ~ c o n j e c t u r e d ~$

 but I do not see that this is of much assistance. I have translated as if
 But it is possible that $\tau \hat{\eta} s i \eta \mu \sigma \epsilon{ }^{\prime}$ s ought to be excised as a gloss explanatory of μ '́pous tivós.

It appears (from the criticism of this argument at $969^{\mathrm{b}} 10-12$) that the advocates of 'indivisible lines' reasoned thus:- ' Lines measured by the same unit are "commensurate". Now take any line, $A B$. It will always be possible to find, or draw, a line containing without remainder a multiple of the units in $A B$: i.e. $A B$ will be "commensurate". Let then all "commensurate" lines (i.e. all lines) be actually measured. There will be an actual length, or infinitesimal line, $x y$, which is the unit of measurement of them all. And $x y$ must be indivisible. For, if not, $x y$ will have parts: and thus the unit will be multiple (v. g. will be twice its own half), which is absurd.' The fallacy is obvious, and is exposed at $969^{\text {b }}$ 10-12. Any line $A B$ can become 'commensurate' with some line : but, because commensurate with some line, it is not necessarily commensurate with all lines, or 'commensurate' absolutely. One would indeed think the fallacy too obvious to have been committed: but, in the refutation, the writer refers to it as a ridiculous and obvious sophism, cf. $969^{\text {b }} 6-10$ and $12-15$.

 place a colon before 'ंтєi. The insertion of åoaipetov was suggested by Hayduck, after the Latin translator, Julius Martianus Rota, who writes 'quoniam vero hoc fieri nequit, indivisibilis esse mensura debet'.
${ }^{8}{ }^{\mathrm{b}}$ 12-14. Let $x y$ be the unit of measurement, which measures all commensurate (i.e. all) lines. Then all lines will 'consist' of simples: for they will either contain $x y$ once, or more than once, without remainder.
${ }^{4}{ }^{\mathrm{b}}$ I4-16. The object of this argument is to show that 'simple units' must be admitted in plane figures, as well as in lines. The writer selects the square as an example of plane figure, and maintains that all squares

But if＜per impossibile〉 any such unit－square be cut along any prescribed and determinate line，that line will be neither ＇rational＇nor＇irrational＇，nor any of the recognized kinds of〈irrational〉 lines which produce rational squares，such as the ＇apotome＇or the＇line ex duobus nominibus＇．Such lines， 20 at which the unit－square might be divided，will have no nature of their own at all；though，relatively to one another，they will be rational or irrational．${ }^{1}$
consist ultimately of a finite number of minimal squares，not themselves divisible into any smaller plane figures．

In order to understand the argument，and the fallacy on which it rests， it will be necessary to explain certain technical terms of Greek geometry． （1）The expression тà à $\bar{\delta} \dot{o} \tau \omega \bar{\nu} \dot{\rho} \eta \tau \omega \nu \gamma \rho a \mu \mu \omega \hat{\nu}$（1．15）must－in accordance with Euclid＇s invariable usage－mean＇the squares on the $\dot{\rho} \eta \tau a i \quad \gamma \rho a \mu \mu a i$＇． The noun implied is тєтрá $\gamma \omega \nu a$ ：but $\tau \dot{u}$ à π ó followed by the genitive is constantly used without $\tau \in \tau \not a \dot{a} \gamma \omega \nu \quad \nu$ ，and always means the square on such－ and－such a line．（Hence Apelt is wrong in translating＇Alle Flächen mit rationalen Seitenlinien＇．）（2）The proper meaning of pprai $\gamma \rho a \mu \mu a i$ will be seen from the following definitions of Euclid（Elem．X）：－def． 3 ＇．． given any straight line，there are an infinity of straight lines commen－ surate with it and an infinity incommensurate with it－incommensurate cither in length only，or both in length and in respect to the areas which
 Let the given straight line，and all the straight lines which are commen－ surate with it（whether commensurate both μ＇̇кєє and $\delta v \nu a ́ \mu \epsilon t$, or $\delta v v a ́ \mu \epsilon \iota$ only）， be called＂Rational＂（ $\rho \eta \tau a i)$ ：and let the straight lines，which are incom－ mensurate with it，be called＂Irrational＂（ä入oyou）＇：def． 4 ＇And let the square on the given straight line，and all the squares commensurate therewith，be called＂Rational＂：and let the squares incommensurate with it be called＂Irrational＂．．．＇（3）Any straight lines，which are multiples of the same unit of length，are said to be $\sigma \dot{\nu} \mu \mu \epsilon \tau \rho \circ \iota \mu \dot{\eta} \kappa \epsilon \iota$ ．If e．g． the unit of measurement be $\dot{\eta} \pi$ oסtaia（the line one foot long），all lines con－ taining a whole number of feet are $\sigma \dot{v} \mu \mu \epsilon \tau \rho о \iota \mu \dot{\eta} \kappa \epsilon$ ．But lines which do not contain a whole number of the same unit of length are said to be $\sigma \dot{v} \mu \mu \epsilon \tau \rho о$ $\delta \nu \nu a ́ \mu \epsilon \iota$ ，if they form squares containing a whole number of the same unit of area．All lines，which are $\sigma \dot{v} \mu \mu \epsilon \tau \rho о \iota \mu \dot{\eta} \kappa \epsilon$ ，are necessarily also $\sigma \dot{v} \mu \mu \epsilon \tau \rho \circ$ סvvámet－but the converse does not hold（Eucl．Elem．X，prop．9，Coroll．）．

We are now in a position to understand the argument of ${ }^{b} 14-16$ ．The writer extends the relative term＇rational＇illegitimately（making it absolute），just as before he illegitimately extended the relative term ＇commensurate＇．All＇rational＇lines are by definition $\delta v \nu a ́ \mu \epsilon \iota ~ \sigma v ́ \mu \mu \epsilon \tau \rho o t:$ and therefore all squares on rational lines are commensurate．And if we suppose them actually measured，there will be an actual minimal square， the unit of measurement of them all（cf．above， $968^{\text {b }} 6-8$ ）：and this minimal square can be shown to be indivisible－i．e．not to contain smaller plane figures－as before the unit－line was shown to be átaipєtov（ $968^{\mathrm{b}} 8-12$ ）． But－unless we assume that all lines consist of indivisible and equal unit－ lines－we cannot assume that all lines are＇rational＇in Euclid＇s sense， nor that all squares are commensurate with one another．
${ }^{1}{ }^{\mathrm{b}} 16-2 \mathrm{I}$ ．The text of this passage is corrupt，and the argument obscure， and I have no confidence in the interpretation which I have given．As
§ 2. To these arguments we must make the following ${ }^{2}$ answers :-
(i) (a) In the first place, it does not follow that the quantum, which admits an infinite number of divisions, is not 'small ' or 'little'. For we apply the predicate 'small' to place and magnitude, and generally to the continuous (and in some quanta the predicate 'little' is suitably applied) ${ }^{1}$; and nevertheless

The lines called éк סvoì òvoнáтоь and àmотон́ are two types of Irrationals (i.e. $\mu \dot{\eta} \kappa \epsilon \iota$ à $\dot{v} \mu \mu \epsilon \tau \rho o t$, but $\delta v \nu a ́ \mu \epsilon t ~ \sigma v ́ \mu \mu \epsilon \tau \rho о \iota)$ which play a large part in Euclid, Elem. Bk. X.

The line ék סvoì ỏvouátoov is defined in Prop. 36 thus: - ' If two rational straight lines, which are commensurate $\delta v \nu a \mu \epsilon t$ only, be added together, the whole line is irrational : let it be called " the line '́к ס́vo óvoна́т ν "" ':-i.e. the line $A C$ is that type of 'Irrational' (irrational relatively to $A B$ and $B C$) which is called 'ex duobus nominibus', if it is such, that $A B^{2}$ is commensurate with $B C^{2}$, but $A B$ is incommensurate with $B C, A B$ and $B C$ ' are called the ' $\dot{\nu \nu o ́ \mu a \tau a \text { ' }}$ of $A C$.

The aंпотон η is defined in Prop. 73 thus :-' If from a rational line there be taken a rational line commensurate with the whole line $\delta v \nu \dot{\prime} \mu \epsilon t$ only, the remainder is irrational : let it be called an " inото $\boldsymbol{\eta}^{\prime}$ "':--i.e. if the line $A B$ be divided at C, so that $A B^{2}$ is commensurate with $C B^{2}$ but $A b^{\prime}$ is incommensurate ($\mu \mu_{1}^{\prime} \kappa \epsilon \iota$) with $C B$, then
 $A C$ is called an $\dot{\alpha} \pi о т о \mu \eta$. The complementary part of the whole line (viz. $C B$) is called relatively to $A C$ its $\pi \rho o \sigma a \rho \mu \dot{\zeta} \zeta o v \sigma a$ (cf. Propp. 79-84). We might illustrate these two types of 'Irrationals' thus:-(I) Let the two ovó $\mu a \tau a$ be I and $\sqrt{5}$. Then the whole line, $A B+B C,=(1+\sqrt{5})$. 1 is incommensurate with $\sqrt{5}$, but $(1)^{2}$ and $(\sqrt{5})^{2}$ are commensurate. (2) Let the whole line, $A B$, be $\sqrt{5}$. Divide $A B$ at C, so that $C B=\mathrm{I}$. Then $(\sqrt{5})^{2}$ is commensurate with $(1)^{2}$, but $\sqrt{5}$ is incommensurate with I. $A C$ (the $\mathfrak{a} \pi о т о \mu \eta)=(\sqrt{5}-1)$.

I have interpreted the argument $\left(968^{\mathrm{b}}\right.$ 16-21) as a reductio ad absurdum. 'Suppose,' the writer urges, 'the unit-square is divided. The line dividing it will not answer to any known line : i.e. there is no line recognized by Geometry at which the unit-square could be divided into smaller plane figures. For whatever line of division be selected, that line will neither be rational nor irrational : nor will it fall under any of the recognized types of line which, though irrational quâ lines, produce rational squares, or otherwise exhibit relations studied by Geometry. Any such lines of division will, in fact, belong to a new order of lines, which may be expressed as rational or irrational in terms of one another, but not in terms of the ordinary geometry of lines.'

 improvement, though the excision of $\mu \dot{\ell} \nu$ seems unnecessary. (It is,
we affirm that these quanta admit an infinite number of divisions．
（i）（b）Moreover，if in the composite magnitude there arc contained 〈indivisible〉 lines，${ }^{1}$ the predicate＇small＇is applied to these indivisible lines，and each of them contains an infinite $969^{\text {a }}$ number of points．But each of them，quâ line，admits of divi－ sion at a point，and equally at any and every point ：hence each of these indivisible lines would admit an infinite number of divisions just like the non－indivisible lines．${ }^{2}$ Moreover， some amongst the non－indivisible lines are＇small＇．But every non－indivisible line admits of division in accordance with any prescribed ratio ：and the ratios，〈in accordance with which any such line may be divided \rangle ，are infinite in number．${ }^{3}$
however，omitted by Za．）Apelt defends the MSS．reading，but interprets
 as predicate of the whole．This seems difficult，because (a) the $\mu \dot{\varepsilon} v$ ［ $\epsilon^{\prime} \phi^{\prime} \omega \nu \nu \dot{\epsilon} \nu$ ］is purely gratuitous，and（b）there is no reason why the writer should over－ride the distinction between μ ккрóv and ỏ入íyov．

If the ró be retained，the clause must，I think，be treated as parenthetical and interpreted as above．
 $\gamma \rho a \mu \mu a i$ ．He suggests that the passage ought to be emended to run
 $\mu к \rho o v^{\prime}$ ．Of this I can make nothing ：nor do I see how he could defend his translation＇und von ihrem Mass gesagt wird，es sei unteilbar klein＇．

 there is a lacuna after $\sigma v \nu \theta \dot{\epsilon} \tau \omega$ ，I have ventured to conjecture $\epsilon_{\tau \iota} \delta^{\prime} \epsilon i \in \frac{\epsilon}{\epsilon} \nu \tau \hat{\phi}$
 $\mu \eta^{\prime} к \epsilon$ ．

 $\ddot{a} \nu, \dot{\omega}$ ，combining the readings of NZ^{a} and H^{a} ．The passage then runs

 after ส̈тороข．］

 If this be thought too bold，we might retain the MSS．order，and read
 We must then take кai änte poı oi 入óyou closely with the following words． The only authority for λ óyov（which Apelt inserts after émıтaұ $\theta^{\prime} \nu \tau a$ ）is the editio princeps．
(i) (c) Again, since the 'great' is compounded of certain 5 'smalls', the 'great' will either be nothing, or it will be identical with that which admits a finite number of divisions. ${ }^{1}$ For the whole admits the divisions admitted by its parts: i.e. its divisions are finite or infinite, according as their divisions are finite or infinite. ${ }^{2}$ It is unreasonable that, whilst the small admits a finite number of divisions only, the great should admit an infinite number; and yet this is what the advocates of the theory postulate. ${ }^{3}$

It is clear, therefore, that it is not $q u \hat{a}$ admitting a finite and 10 an infinite number of divisions that quanta are called 'small' and 'great' respectively. And to argue that, because in numbers the 'little' number admits a finite number of divisions, therefore in lines the 'small' line must admit only a finite number of divisions, is childish. For in numbers the more complex are developed out of 'simples', and there is a determinate something from which the whole series of the numbers starts, and every number which is not infinite admits I_{5}

The argument of the whole passage $\left(968^{b} 25-969^{a} 5\right)$ I take to be as follows:-'Every composite length contains lines. According to the theory, some amongst these lines are "indivisible". But every one of these lines, quâ line, contains an infinity of points, and admits therefore an infinity of divisions: for a point is that at which a line can be divided. Yet by comparison with the whole (composite) length, all the "indivisible" lines, and at least some of the divisible lines, are "small". Hence infinitely-divisible quanta may be "small".

The λ óyot $\left(969^{2} 4\right)$ are, I presume, the numerical ratios in which any line may be divided.
${ }^{1}$ a. 1 . 1 accept Apelt's conjecture тò μ '́ γ a for the MSS. ov́ μ '́ γa.
 which the whole admits-since it is the sum of its parts-are the sum of the divisions which the parts admit, and the number of divisions is either finite or infinite $i n$ both cases. The argument, to which this is a reply, assumed that the large number of divisions in the 'great' was 'practically infinite' ($968^{\mathrm{a}} 4$), whilst the 'small' admitted only a finite number of divisions.

It is just possible, however, to retain the MSS. reading, if we construe $\grave{a} \xi\llcorner o v \sigma \iota \nu$ as dative plural of the participle, and remove the stop before out $\boldsymbol{\text { ons. }}$. And yet it is a reasonable inference for them, with their assumptions, that the "small" admits a finite number, and the "great" an infinite number, of divisions':-i.e. the view in question has just been shown to be false, but it follows plausibly enough from their premisses.
a finite number of divisions; but in magnitudes the case is not parallel. ${ }^{1}$
17 (ii) As to those who try to establish the being of the indivisible lines by arguments drawn from the Ideal Lines, we may perhaps say that, in positing Ideas of these quanta, they are assuming a premiss too narrow to carry their conclusion ; and, by arguing thus, they in a sense destroy the premisses which they use to prove their conclusion. For their arguments destroy the Ideas. ${ }^{2}$
(iii) Again, as to the corporeal elements, ${ }^{3}$ it is childish to postulate them as 'simple'. For even though some physicists do as a matter of fact make this statement about them, yet to assume this for the present inquiry ${ }^{4}$ is a petitio principiz. Or rather, the more obviously the argument would appear to involve a petitio principii, the more the opinion is confirmed that Solids and Lengths ${ }^{5}$ are divisible in bulk and distance. ${ }^{6}$

[^132]（iv）The argument of Zeno does not establish that the 26 moving body comes into contact with the infinite number of points in a finite time，if the period and the path of the motion are considered on the same principle．${ }^{1}$ For the time and the length are called 〈both〉infinite and finite 〈from different points of view〉，and admit of the same divisions＜if considered both on the same principle $)^{2}{ }^{2}$

Nor is＇thought＇s coming into contact with the members of an infinite series one－by－one＇counting，even if it were supposed that thought does＇come into contact＇in this way with the members of an infinite series．Such a supposition perhaps assumes what is impossible：for the movement of thought does not，like the movement of moving bodies，essentially involve continua and substrata．

If，however，the possibility of thought moving in this fashion be admitted，still this moving is not＇counting＇；for counting is movement combined with pausing．

It is absurd－we may perhaps suggest to our opponents－
can only translate this by making the $\mu \bar{a} \lambda \lambda \frac{}{\alpha}$ of 1.25 do double duty．All would be plain if we could omit каї $\mu \bar{\eta} \kappa$ оs altogether，and read $\sigma \hat{\omega} \mu c$［i．e．

${ }^{6} \mathrm{a}_{21} \mathrm{I}-26$ ．This paragraph is directed against the third argument（968 a 14－18）of the advocates of indivisible lines．That argument rested on the assumption that perceptible bodies involved Elements，i．e．primary constituents．Even admitting that some physicists speak in this way about the constituents of bodies，to take this as a premiss to prove that there are indivisible magnitudes is to beg the question．（Cf．Hayduck， 1．c．，p． 163 ，for the above interpretation．）Or at least it looks like beg－ ging the question：and the more it looks so，the more the prevailing opposite opinion is confirmed．For a view gathers strength in proportion to the weakness of the arguments advanced against it．

 тро́то⿱亠乂．

${ }^{2}{ }^{2} 26-30$ ．The period and the path of the motion，quit continuous quanta，are divisible ad infinitum：：but，quâ determinate（finite），may both be regarded as containing a finite number of units，i．e．as admitting a finite number of divisions only．Zeno＇s argument depends on the fallacy of viewing the period as finite，and neglecting its divisibility ad infinitum $q u \hat{a}$ continuous：whilst the path is viewed（quit continuous）as an actual infinity of points，and its finiteness is neglected．［Cf．also Aristotle＇s solution of Zeno＇s argument，Phys． $233^{\text {a }} 8$－34．］
that, because you are unable to solve Zeno's argument, you should make yourselves slaves of your inability, and should commit yourselves to still greater errors, in the endeavour to support your incompetence. ${ }^{1}$
6 (v) As to what they say about 'commensurate lines'-that all lines, because commensurate ${ }^{2}$, are measured by one and the same actual unit of measurement-this is sheer sophistry ; nor is it in the least in accordance with the mathematical assumption as to commensurability. For the mathematicians do not make the assumption in this form, nor is it of any use to them.
Moreover, it is actually ${ }^{3}$ inconsistent to postulate both that every line becomes commensurate, and that there is a common measure of all commensurate lines. ${ }^{4}$

[^133]Hence their procedure is ridiculous，since，whilst professing 12 that they are going to demonstrate their thesis in accordance with the opinions of the mathematicians，and by premisses drawn from the mathematicians＇own statements，they lapse into an argument which is a mere piece of contentious and sophistical dialectic－and such a feeble piece of sophistry too！ For it is feeble in many respects，and totally 〈unable〉 to escape paradox on the one side，and destructive scientific criticism on the other．${ }^{1}$

Moreover，it would be absurd for people to be led astray by 16 Zeno＇s argument，and to be persuaded－because they cannot refute it－to invent indivisible lines ：and yet to pay no atten－ tion to all those theorems concerning lines，in which it is proved that it is impossible for a movement to be generated such that in it the moving thing does not fall successively on each of the intervening points before reaching the end－point．For the ${ }_{25}$ theorems in question are far better established，and more generally admitted，than the arguments of Zeno．${ }^{2}$
surate＇，and（ii）that all commensurate lines have a common measure： and these two propositions are inconsistent．For（i）is true only if ＇commensurate＇be used in a relative sense；and then（ii）is false． Whilst（ii）is true only if＇commensurate＇be used in an absolute sense ； and then（ i ）is false．

By reading ф́íкоутas in 1． 13 very tolerable sense may be made of the first sentence．Apelt follows N and reads tò кaì tàs кт入 ．．．éyk入ivat ．．． ＇ridiculum est et illorum（sc．mathematicorum）placita et ea，quibus ipsi argumenta sua superstruunt，in sophisticas captiones detorquere．＇But avioi（cf． $968^{\text {b }} 4$ ，to which this refers）is most naturally taken as＇the mathematicians＇：and in any case Apelt＇s interpretation is not con－ vincing．

The last sentence seems to be corrupt．The general sense of the
 ．．．：but I hesitate to propose any reading．The point seems to be that the advocates of indivisible lines are exposed to a double fire．They are using as an argument what to common sense is ridiculous paradox，and what to professional mathematicians is demonstrably unscientific．
${ }^{2} b_{16-26}$ ．In the above paraphrase I think I have reproduced the general drift of this passage．Zeno showed that if a body is to move from A to B ，it must touch all the intermediate points before reaching B ：i．e． it must traverse an infinity in a finite time．And he argued that motion is impossible．The advocates of indivisible lines replied：＇Motion is a
§ 3. It is clear, then, that the being of indivisible lines is neither demonstrated nor rendered plausible-at any rate by the arguments which we have quoted. And this conclusion will grow clearer in the light of the following considerations :-
(A) In the first place, ${ }^{1}$ our result will be confirmed by reflection on the conclusions proved in mathematics, and on the assumptions ${ }^{2}$ there laid down-conclusions and assumptions
fact, and therefore-since Zeno's argument is sound-the line $A B$ must consist of a finite number of indivisible unit-lines.' The writer here rejoins: 'Geometry proves that there can be no motion without the phenomenon to which Zeno called attention. A motion, such as your theory requires-a motion in which the moving body does not traverse successively all the intermediate points-does not, and cannot, occur. And the theorems, in which geometry establishes this, are far more convincing than the arguments of Zeno.'

In other words:-Geometry, assuming motion to be a fact, shows that the moving thing does traverse an infinity of intervening points, and shows that there can be no motion in which this does not take place. The advocates of indivisible lines have made no attempt to refute these geometrical proofs. Their postulate of 'indivisible lines', even if it evaded Zeno, collides with these far more solid facts of geometry : for the kind of motion which would occur, if there were indivisible lines, is shown by geometry to be impossible.

The text of this passage is so corrupt that it seems hopeless to make out the details of the argument.

In 11. 19-21 the writer is clearly referring to the movement of a straight line about one of its terminal points, whereby a semicircle (and, ultimately, a circle) is generated. δ ta $\sigma \tau \eta \mu \pi$ is the regular term in Euclid for the distance at which, from a given point as centre, the circumference of

 fact $={ }^{6}$ radius '.)

But Apelt (in the Prolegg. to his text) proposes other emendations for the rest of the passage, which are not convincing. It is best to recognize that the passage is hopeless, until somebody can discover the exact geometrical theorems to which the writer is referring.
${ }^{1} \mathrm{~b}_{2} 8 \mathrm{ff}$. The writer is going to show that the doctrine of indivisible lines cannot be reconciled with mathematics. It collides with the conclusions established in mathematics, and it collides with the premisses laid down by the mathematicians. He adduces a series of instances of such

$\pi \rho \omega \hat{\tau o \nu} \mu \dot{\epsilon} \nu\left({ }^{\mathrm{b}} 29\right)$ is answered by $\pi a ́ \lambda \iota \nu\left(97 \mathrm{O}^{\mathrm{a}}\right.$ 19).
${ }_{2}{ }^{\text {b }} 30$. I have translated $\tau \in \theta \epsilon \epsilon \in \nu \omega \nu$ 'assumptions'. It probably includes (a) definitions of the meaning of 'Subjects' and 'Attributes' (=Aristotle's optorós, where that is used in a restricted sense and contrasted with
 i.e. definitions of the meaning of the 'Subjects' accompanied by the

which we have no right to reject except on more convincing arguments than those adduced by the advocates of indivisible lines. ${ }^{1}$

For (i) neither the definition of 'line', nor that of 'straight line', will apply to the indivisible line, since the latter is not between any terminal points, and does not possess a middle. ${ }^{2}$
(ii) Secondly, all lines will be commensurate. For all lines $970^{\text {a }}$ - -both those which are commensurate in length, and those which produce commensurate squares-will be measured by the indivisible lines.

And the indivisible lines are all of them commensurate in length (for they are all equal to one another), and therefore also they all produce commensurate squares. But if so, then the square on any line will always be rational. ${ }^{3}$

[^134](iii) Again, since, in a rectangle, the line applied at right angles to the longer side determines the breadth of the figure : the rectangle, which is equal in area to the square on the indivisible line (v.g. on the line one foot long), will, if applied to a line double the indivisible line (v.g. to a line two feet long), have a breadth determined by a line shorter than the indivisible line: for its breadth will be less than the breadth of the square on the indivisible line. ${ }^{1}$
are all, quà infinitesimal, equal: hence all commensurate $\mu \dot{\eta} \kappa \epsilon$, and therefore also commensurate δ vivá $\mu \epsilon \iota\left(97 \mathrm{o}^{a} 2-4\right)$.

The point of the criticism is that the doctrine annihilates the mathematical conceptions of Commensurate and Incommensurate, Rational and Irrational.
The passage should be compared with Euclid, Elem. X, deff. 2, 3 and 4 (see above, note on $968^{b} 14$) : and with Plato, Theaet. $147 \mathrm{D}-148 \mathrm{~B}$. In the Theaetetus, Theaetetus and Socrates the Younger are represented as having generalized certain results of the mathematician Theodorus (their master), and having divided all numbers into two series, thus :-
Series I: Those numbers which, if regarded as the areas of rectangular figures, are squares with whole numbers as their sides, e.g. $4,9,16,25, \& \%$.
The roots of these square numbers are what we should call 'rational' : or the sides of the squares are lines $\sigma \dot{v} \mu \mu \epsilon \tau \rho o t ~ \mu \dot{\eta} \kappa \epsilon$, viz. containing whole numbers of the unit of length (the line one foot long).
Theaetetus and Socrates called the sides containing the squares in this series ' $\mu \dot{\eta} \kappa n$ '.
Series 2: Those numbers which, if regarded as the areas of rectangular figures with whole numbers as their sides,
 are oblongs ; or, if regarded as squares, have not whole numbers as their sides. To this series belong e.g. $3,5,6,7,8, \& c$.: and the sides containing these squares-e.g. $\sqrt{3}$, $\sqrt{5}, \sqrt{6}, \& c$.-were called by Theaetetus and his friend ' $\delta v v a ́ \mu \epsilon t s$ ', i.e. ס̀vvá $\mu \in t$ бv́ $\mu-$

We should call the 'sides' of this series of squares 'irrational square roots ' or 'surds'.
${ }_{1} \mathbf{a}_{4}-8$. In this passage I adopt Apelt's reading and interpretation throughout: $\%$. Apelt, Aristotelis quae feruntur, \&c., prolegg. pp. xiv, xv.

If we suppose the 'indivisible line' to be one foot long (cf. Arist. Met. $1052^{\text {b. }} 33$-iv
 then a rectangle, applied to a line two feet
B long, must-if its area is to be equal to the square on the indivisible line-have as its other side a line shorter than the indivisible line: which is absurd.

Let $A B$ be the indivisible line, one foot long. Let $B E$ be the line, two
(iv) Again, since any three given straight lines can be com- 8 bined to form a triangle, a triangle can also be formed by combining three given indivisible lines. Such a triangle will be equilateral : but in every equilateral triangle the perpendicular dropped from the apex bisects the base. Hence, in the equilateral triangle whose sides are the indivisible lines, the ' indivisible' base will be bisected by the perpendicular dropped from its apex. ${ }^{1}$
(v) Again, if the square can be constructed of Simples (i.e. it with indivisible lines as its sides), then let its diagonal be drawn, and a perpendicular dropped from one angle on to the diagonal. The square on the side (i.e. the original square constructed
feet long. Let $C A B D$ be the square on $A B$. If to the line $B E$ there be applied a rectangular figure $G F E B$ equal in area to $C A B D, F E$ or $G B$ will be less than $A B$.

Though I accept Apelt's interpretation, there are one or two difficulties to which attention should be called. (1) тapaßí $\lambda \epsilon \epsilon \iota$ is the technical term constantly used in Euclid (cf. e.g. Elem. I. 44, \&c.) for 'applying' a rectangle or a parallelogram to a given line : i.e. for constructing such a figure with a given line as one of its sides. But (so far as I know) it is always the figure which ' π apaßá $\lambda \lambda \epsilon \tau a t$ ', not the side. Hence $\pi a \rho a-$ $\beta a \lambda \lambda о \mu$ év \quad here ($970^{2} 5$) is suspicious.
(2) Euclid constantly uses the technical expression ' $\pi \lambda$ átos $\pi \neq \epsilon \epsilon$ t $\grave{\eta} \nu$ $A B$ ' to mean ' [a rectangle applied to such-and-such a given line] makes as its other side the line $A B^{\prime}$. But, whatever may have been the original significance of the phrase, there is no implication in Euclid's usage that the side thus produced is shorter than the given line. So far as I have been able to discover, $\pi \lambda$ átos π oteiv in Euclid (a) always has the accusative (e.g. ' $\tau \dot{\eta} \nu A B$ ') expressing the line resulting, and (b) does not mean 'determines the breadth', but simply 'makes as its containing side (other than the given line) '. Cf. e.g. Euclid, Elem. X. 60, where the line thus produced is the longer of the two containing sides: and so often. But here $\left(970^{a} 5,{ }^{a} 7\right)$ the writer speaks of a line 'making the breadth' (rò π גátos $\pi о(\epsilon \hat{l}$), and the expression must be distinguished from the technical phrase in Euclid.
 ȧто́ μ ou means 'the square on the indivisible line'(cf. above, note on $968^{\text {b }}$ 14): and we are to take the кai as illustrative or explanatory. There is no serious difficulty here, though this introduction of the one-foot line is a little sudden. But the words in 1.8 are very difficult. Apelt there
 'For it'-presumably, 'the breadth' -' will be less than the square on the indivisible line '. As this is nonsense, and as the alternative rendering (' for it', viz. the rectangle, ' is less than the square ') gives a meaning irrelevant to the argument, we have to translate 'For the breadth of the rectangle will be less than that of the square'. But I cannot say that the Greek justifies this translation.
${ }^{1}$ as-II. This argument presents no difficulty. Cf. Euclid, Elem. I. Io. тиviotar日at is the regular term in Euclid for 'constructing' a figure.
with Simples as its sides) will be equal to the square on the perpendicular together with the square on half the diagonal. Hence the side of the square-i.e. the 'indivisible' line-will not be the smallest line. ${ }^{1}$
14 Nor will the area, which is the square on the diagonal, be double the square on the indivisible line. For <suppose it to be so : then, \rangle if from the diagonal a length equal to the side of the original square be subtracted, the remaining portion of the diagonal will be less than the 'simple' line. For if the remaining portion of the diagonal were <not less than, but〉 equal to the 'simple' line, the square on the diagonal would have been four times the original square. ${ }^{2}$

- 14. I adopt Apelt's emendation δ ицє́троv in 1.12 for the MSS. δu
 The Latin translation by Rota has 'si quadratum ex quatuor insecabilibus lineis consistat', and LPW ${ }^{\text {a }}$ omit тєтрá $\omega^{\boldsymbol{\omega}} \boldsymbol{y}^{\boldsymbol{\nu}} \boldsymbol{\nu}$ in a lacuna. Perhaps we should

Another interpretation would be possible, if we retain the MSS. reading
 the square belongs to the class of Simples, then ... [as above] . . . half the diagonal. Hence the "simple" square will not be the smallest square.' The argument would then be directed against the application of the theory of 'simples' to squares (cf. above, $968^{b} 14^{-16}$). The assumption of a least 'indivisible' or 'simple' square collides with Euclid, Elem. I. 47. For, let $A B C D$ be the 'simple', or 'minimal', square. Draw the diagonal $B D$, and the perpendicular $A E$ bisecting $B D$ at E. Then, since $A E B$ is a right angle, $A B^{2}=A E^{2}+B E^{2}$, and therefore $A E^{2}$ and $B E^{2}$ are, each of them, smaller squares than the supposed smallest square, $A B C D$.
 argument in 11. 14-17, seem decisive in favour of the interpretation which I have adopted in the text.
${ }^{2}{ }^{2}$ I4-17. In 1.17 I read (with N and Apelt) ϵi yà ρ ï $\sigma \eta, \tau \in \tau \rho a \pi \lambda a ́ \sigma \iota o \nu$ äv

Geometers have proved (i) that the square on the diagonal $=$ twice the square within which the diagonal is taken: i.e. that $B D^{2}=2 A B C D$:
 and (ii) that if any line $x y=$ twice any other line $m n, x y^{2}=4 m n^{2}$.

Hence, it follows that $B D$ in the square $A B C D$ is less than $2 A B$: i.e. that, if from $B D$ a portion $D F=A B$ be subtracted, the remainder $B F$ is less than $A B$. If, therefore, $A B$ is an 'indivisible 'line, either $B D^{2}$ will not be equal to $2 A B^{2}$ (but $=$ at least $\left.4 A B^{2}\right)$, or $B D$ will contain $F D(=A B)$ $+B F$ (a line less than the 'indivisible' line): the first alternative conflicts with an established geometrical conclusion, and the second alternative is absurd.

And one might collect other similar absurdities to which the doctrine leads; for indeed it conflicts with practically everything in mathematics. ${ }^{3}$
(B) Then again <the following arguments support our criticism of the doctrine $\rangle:-{ }^{2}$
(i) The Simple admits of only one mode of conjunction, but 19 a line admits of two : for one line may be conjoined to another either by contact along the whole length of both lines, or by contact at either of its opposite terminal points. ${ }^{3}$
(ii) Further, the addition of a line will not (on the theory) make the whole line any longer than the original line to which the addition was made : for Simples will not, by being added together, produce an increased total magnitude. ${ }^{4}$
(iii) Further, every continuous quantum admits more divi- 23 sions than one, and therefore no continuous quantum can be formed out of two Simples. And since every line (other than the indivisible line) is admittedly continuous, there can be no indivisible line: 〈for if there were, a continuous quantum-viz. the line formed by the conjunction of two indivisible lines -would be formed out of two Simples. $\rangle^{\bar{j}}$
 $\mu \eta$ кous.
 "̈̀ λ oya $\delta^{\prime} \not{ }^{a} \nu \kappa \tau \lambda$. There should, of course, be a full stop between $\delta \iota a ́ \mu \in \tau \rho o s$

${ }^{2}{ }^{\text {a }} 19$. This begins a second series of arguments (in support of the writer's rejection of indivisible lines). $\pi \hat{\lambda} \lambda \iota \nu$ here corresponds to $\pi \rho \omega \hat{\tau} \boldsymbol{\nu}$ $\mu \dot{\epsilon} \nu \ldots\left(969^{\mathrm{b}} 29\right)$, which introduced the series of arguments just concluded.
${ }^{3}{ }^{2}$ I9-21. What is 'simple' or 'without parts' can be conjoined with anything else only in one fashion. But a line can be (a) laid alongside of another line, or (b) conjoined with it, end to end. (Cf. de Caelo, 299 25).
 I take them to mean ' at either of its contrary terminal points'. The mode of $\sigma \dot{v} a \psi$ es is the same whether the line $x y$ be conjoined with the line $A B$ at A
 or at B, and at x or at y.

The addition of $\gamma \rho \alpha \mu \mu \hat{\eta}$ makes the Greek easier, but does not seem absolutely necessary.
 ((yivecfat MSS.), and also his punctuation, but not his interpretation.

I have paraphrased freely, so as to bring out the argument as I under-
(iv) Further, if every line (other than the indivisible line) can be divided both into equal and into unequal parts-every line, even if it consist of three or any odd number of indivisible lines-it will follow that the 'indivisible' line is divisible. ${ }^{1}$
 that even the advocates of indivisible lines admit that all other lines are continuous: and argues that a line compounded of two indivisible lines would, on their admission, have to be continuous, but could not be so on the principle that every continuum admits more than one division.

I accept Apelt's reading (which is partly based on Hayduck's conjec-

The writer is assuming, in the present series of arguments ($970^{\text {a }} 19-33$), that the advocates of indivisible lines accept certain common mathematical assumptions as applying to the composite (non-indivisible) lines: and shows that their application is inconsistent with the "indivisibility' of the unit-lines.
 rat. This formula is constantly used by Euclid (cf. e.g. Elem. II. 5 and 9) to mean bisection and simultaneous division into two unequal parts. If we so understand it here, the argument is plain: but then 1. 33 (öтav $\mathfrak{\eta}$ ék

It seems best, therefore, to interpret 'into any number of equal, and any number of unequal parts'. And there is reason for thinking that 'division into unequal parts', as here contemplated, involved a process of progressive bisection. (Cf. e.g. Alexander's Commentary on Arist. De Sensu, $445^{\text {b }} 27$: and G. R. T. Ross, Aristotle: De Sensu and De Memoria, pp. 199-200.) If, e.g., the line $A B$ was to be divided into $\frac{1}{4}$ and $\frac{3}{1}$, the method would be to bisect $A B$ at C, and again to bisect $A C$ at D. $A D$ would then be $\frac{1}{4}$, and $D B \frac{3}{4}$, of $A B$. It would not be possible by this method to divide $A B$ into parts repre-

sented by fractions whose denominators were other than powers of 2 : but it would be possible to exhibit such fractions on the line $A B$. Thus, e.g..

And the same will result if every line admits of bisection: 29 for then every line consisting of an odd number of indivisible lines will admit of bisection, and this will involve the division of the 'indivisible' line. ${ }^{1}$
it would not be possible to divide $A B$ into $\frac{3}{3}$ and $\frac{4}{7}$, nor into ${ }_{8}^{8}$ and $\frac{1}{6}$. But by triply bisecting $A B$, and eliminating $\frac{1}{8}$ th, the remainder ' $A I$ could be divided into $A G=\frac{3}{7}$ and $G I=\frac{1}{\frac{1}{2}}$: whilst, by eliminating ${ }_{8}^{\prime}$ th, the remainder $A F$ could be divided into $A H=\frac{5}{6}$ and $H F=\frac{1}{6}$.

There is no evidence in this passage that the writer knew of the following method for dividing any given line into any number of parts:--Let it be required to divide $A B$ into (e.g.) three equal parts. From B draw $B C$

$=A B$, produce $B C$ to D, making $C D=A B$: and produce $B D$ to E, making $D E=A B$. Join $E A$; and from D and C draw $D F$ and $C G$, each parallel to $E A$, to the points F and G on $A B, A F, F G$, and $G B$ will then be, each of them, $\frac{1}{3} \mathrm{rd}$ of $A B$.

If we assume that the writer was unaware of this latter method, it is obvious (a) that no line consisting of an odd number of unit-lines could be 'divided into unequal parts', for the first bisection would divide the middle unit-line: and (b) that there would be a limit to the 'division into unequal parts' of lines consisting of an even number of unit-lines, since no such line could be progressively bisected ad libitum without dividing the unit-line (cf. $970^{\text {a }} 33$).
${ }^{1}$ a29, 30. Mathematicians further assume that every line can be bisected. If the advocates of ' indivisible' lines accept this assumption, it will apply to lines compounded of an odd number of unit-lines ($\pi \hat{a} \sigma a$ $\gamma \dot{\alpha} \rho$
 middle ' indivisible ' line is divided.

And if not every line，but only lines consisting of an even number of units admit of bisection ：still，even so，the＇indivi－ sible＇line will be divided，when the line consisting of an even number of units is divided into unequal parts（by progressive bisection）．${ }^{1}$
33 （C）Again，${ }^{2}$（the following arguments must be considered against the doctrine \rangle ：－
$970^{\text {b }}$（i）If a body has been set in motion and takes a certain time to traverse a certain stretch，and half that time to traverse half that stretch，it will traverse less than half the stretch in less than half the time．${ }^{3}$ Hence if ${ }^{4}$ the stretch be a length con－ sisting of an odd number of indivisible unit－lines，we shall here again find ${ }^{5}$ the bisection of the＇indivisible＇lines，since the 5 body will traverse half the stretch in the half time：for the time and the line will be correspondingly divided．${ }^{6}$

So that none of the composite lines will admit of division both into equal and into unequal parts，nor will they admit of
${ }^{1}$ a $30-33$ ．In the above interpretation I have omitted altogether the
 stand will not translate．If we read kai cis $\not \omega \nu \sigma a$ in place of кai $\delta \sigma \sigma a$ ，the meaning is plain enough ：but the words are then not required for the argument．

Hayduck，and after him Apelt，conjectures каi óтапิ̀＇and if it is possible to divide（i．e．to bisect）the line which is being bisected（viz．the line with an even number of units）as many times as you please＇．But，if my interpretation of סtaipects cis avtoa is right，these words are not required．Whilst，if my interpretation is wrong，I do not see how a valid argument is to be extracted from the passage．Apelt（cf．his Prolegg． p．xviii，note，p．xix ：and his German translation of the passage）interprets $\ddot{u} \nu \iota \sigma a$ as equivalent to $\pi \epsilon \rho \iota \tau \tau a$, for which I can discover no justification．
 （ $970^{\mathrm{a}} \mathrm{I} 9$ ），and marks the beginning of a new group of arguments．
${ }^{3}$ The protasis extends to кıขnө́ŋซєtat，and the apodosis is каì $\dot{\nu} \nu \tau \hat{\omega}$ é入étтov．．．$\dot{\eta} \mu \boldsymbol{i} \boldsymbol{\sigma} \epsilon t a r . ~ W e ~ s h o u l d ~ t h e r e f o r e ~ p l a c e ~ a ~ c o m m a ~ a f t e r ~ к ı \nu \eta \theta \dot{\eta}-$ retat（ $970^{\mathrm{b}} 2$ ）．
${ }^{4} \mathrm{~b}_{3}$ ．I adopt Apelt＇s conjecture $\epsilon \mathfrak{i} \mu \dot{\epsilon} \nu\langle\epsilon \in \mathrm{K}\rangle \pi \epsilon \rho \iota \tau \tau \hat{\epsilon} \nu$ ．
${ }^{5} \mathrm{~b}_{3}$ ．The MSS．read àvaı $\rho \in \theta^{\prime} \boldsymbol{\sigma} \sigma \epsilon \tau a \iota$（ Z^{a} fort．àvє $\rho \in \theta \dot{\eta} \sigma \epsilon \tau a t$ ）．Apelt con－ jectures av̉ $\epsilon \dot{\cup} \rho \in \theta_{\eta} \dot{\eta} \in \tau a t$ ，but the position of the $a \mathcal{v}^{\mathcal{U}}$ is impossible．I read ảvevpєӨグテєтat（＇redibit＇，Rota）．
${ }^{6}{ }^{1} 5,6$ ．Since the time is bisected，the stretch－i．e．the line，supposed in this case to consist of an odd number of units－will be bisected too．

After these words there is，I think，a lacuna．For nothing is said as to the case in which the stretch consists of an even number of units：－i．e． there is no clause to answer to $\epsilon i \mu \dot{\epsilon} v \hat{\epsilon}^{\prime} \kappa \pi \epsilon \rho \iota \tau \tau \bar{\omega} \nu$ in $970^{b} 3$ ．And no use is
 which was probably intended to be applied in proving the divisibility of the unit－line，even when the stretch consisted of an even number of units．
division corresponding to the division of the times, if there are to be 'indivisible' lines. ${ }^{1}$ And yet (as we said) the truth is, that the same argument, which leads to the view that lines consist of Simples, leads by logical necessity to the view that all these things (composite times, e.g., as well as composite lines) consist of Simples. ${ }^{2}$
(ii) Further, every line which is not infinite has two terminal 10 points: for line is defined by these. Now, the 'indivisible' line is not infinite, and will therefore have a terminal point. Hence it is divisible : for the terminal point and that which it terminates are different from one another. Otherwise there will be a third kind of line, which is neither finite nor infinite. ${ }^{3}$
(iii) Further, there will not be a point contained in every ${ }^{14}$ line. For there will be no point contained in the indivisible line ; since, if it contains one point only, a line will be a point, whilst if it contains more than one point it will be divisible. And if ${ }^{4}$ there is no point in the indivisible line, neither will there be a point in any line at all: for all the other lines are made up out of the indivisible lines. ${ }^{5}$

 that something has dropped out between $\tau \mu \eta \theta_{\eta}^{\prime} \sigma \epsilon \tau a t$ and $\begin{gathered}\omega \\ \tau \\ \\ \text { in } 1.6 \text { : see }\end{gathered}$ the preceding note.
 $\grave{\iota} \mu \varepsilon \rho \bar{\nu} \nu$.

The reference is to $969^{a} 29,30$. For rà δ ' we should presumably read
 but no doubt the statement is intended to apply to ali composite quanta.
 line, unless it be infinite, has two ends or limits, viz. its terminal points. The indivisible line, therefore, since it is not infinite, has two limits. But, if it has even one limit, it is divisible, viz. into (a) the limit, and (b) the limited. The only escape from this dilemma ('either infinite or limited and so divisible') would be to say that the 'indivisible lines' constitute a third class of line, neither finite nor infinite.
 mean 'And, what is more, if'? Or 'And if it be conceded that'?

The writer sets out to show that the geometrical principle, that 'in every line there is contained a point', will not hold of the 'indivisible' line. For if it contains but one point, it will be that point, i.e. a line will be a point: whilst if it contains more than one, it will be divisible. He then shows that it follows that this geometrical principle does not hold of any line, since all lines are (on the theory) either indivisible lines or com-

Moreover, if there are points in the indivisible line, there will either be nothing between the points, or a line. But if there is a line between them, and if all lines contain more points than one, the unit-line will not be indivisible. ${ }^{1}$
(iv) Again, it will not be possible to construct a square on every line. For a square will always possess length and breadth, and will therefore be divisible, since each of its dimensionsits length and its breadth-is a determinate something. But if the square is divisible, then so will be the line on which it is constructed. ${ }^{2}$
23 (v) Again, the limit of the line will be a line and not a point. ${ }^{3}$ For it is the ultimate thing which is a limit, and it is the 'indivisible line ' which is ultimate. ${ }^{4}$ For if the ultimate thing be 'point', then the limit to the indivisible line will be a point, and one line will be longer than another by a point. ${ }^{5}$ But if it be urged that the limiting point is contained within the
posites of these. For the geometrical principle cf. Arist. Post. Anal. $73^{\text {a }}$

${ }^{1}{ }^{\mathrm{b}} \mathbf{1 8} \mathbf{- 2 0}$. I interpret this as a further argument to prove that there cannot be two (or more) points in the indivisible line. For suppose there are two points in it. Then either there is nothing between them, and then they collapse into an indistinguishable unity: or there is a line separating them. But then this line will itself contain two or more points, between which there must be another line, and so on in infinitum: hence the original unit-line will not be 'indivisible' if it contains two (or more) points.
${ }^{2} \mathrm{~b}_{2 \mathrm{I}} \mathrm{-} 23$. This argument is very obscure, and perhaps the text is wrong. It is a principle of geometry that a square can be constructed on any given

line : but it does not follow, because the length $(A B)$ of the square $A B C D$ is distinguishable from its breadth $(A C)$, and because therefore the square is divisible into length and breadth, that $A B$ or $A C$ are themselves divisible quá lines.

The Greek énєi tò $\mu \epsilon ́ v, \tau o ̀ ~ \delta e ́ ~ \tau t ~ s e e m s ~ s u s p i c i o u s, ~$ but I have no remedy to propose. Cf., however, the argument at $970^{\text {b }} 30 \mathrm{ff}$. A square, if divided, must be divided 'at a line': i.e. its division must involve the division of its breadth or length. But this is impossible if its sides (and therefore all lines within it which are parallel to them) are 'indivisible ' lines.

 parent, but futile, attempt to make sense of the traditional reading.

indivisible line, on the ground that two lines united so as to form a continuous line have one and the same limit at their juncture, then the simple line (i.e. the line without parts) will after all have a limit belonging to it. ${ }^{1}$

And, indeed, how will a point differ at all from a line on their theory? For the indivisible line will possess nothing characteristic to distinguish it from the point, except the name. ${ }^{2}$
(vi) Again, if there be indivisible lines, there must, by parity 30 of reasoning, be indivisible planes and solids too. ${ }^{3}$ For the being of an indivisible unit in one dimension will carry with it the being of indivisibles in the remaining dimensions too, ${ }^{4}$ since it is at a plane that a solid is divided, and at a line that a plane is divided. But there is no indivisible solid : for a solid contains depth and breadth. Hence neither can there be an $97 \mathrm{I}^{\mathrm{a}}$ indivisible line. ${ }^{5}$ For a solid is divisible at a plane, and a plane is divisible at a line. ${ }^{6}$

[^135]But since the arguments by which they endeavour to convince us are weak and false, and since the opinions 〈which they are trying to establish) conflict with all the most convincing arguments, it is clear that there can be no indivisible line. ${ }^{1}$
§ 4. And it is further clear from the above considerations that a line can no more be composed of points than of indivisible lines. For the same arguments, or most of them, will apply equally against both views.
For (i) it will necessarily follow that the point is divided, when the line composed of an odd number of points is divided into equal parts, or when the line composed of an even number of points is divided into unequal parts. ${ }^{2}$
the planes bounded by those lines-and if there are simple planes there must be simple solids, viz. the solids contained by those planes. For to divide a solid is to divide it at a plane, and thus to divide all the planes at right angles to the plane of division. And to divide a plane (cf. above, $970^{\text {b }} 21-23$) is to divide it at a line, and thus to divide all the lines at right angles to the line of division. Hence if every solid, however minute, is
 divisible, every plane must be divisible too: and if every plane, however small, is divisible, every line must be divisible too.

This appears to be the argument: but the reason given ($97 \mathrm{I}^{\text {a }}$ 1) for the divisibility of every solid is obscure, in the same way as the reason given for the divisibility of every square $\left(970^{b} 23\right)$ was not convincing. And could not the advocates of 'indivisible lines' have insisted that a plane figure, though divisible, might yet have as one of its containing sides an 'indivisible line'? The oblong $A B C D$, e.g., might be divisible along its length $A B$, and yet indivisible in respect to its breadth $A D:$ i. e. AD might be an 'indivisible line'.
${ }^{1}{ }^{3} 3-5$. This sums up the case against the indivisible lines. We have seen in $\$ 2$ that the arguments advanced in support of the theory are weak and false: and we have seen in $\S 3$ that the tenets of the theory collide with the principles and conclusions of mathematics.

The text in these lines is not very satisfactory. We should expect a somewhat stronger particle than $\delta \epsilon \epsilon^{\prime}{ }^{2}{ }^{2} 3$ to introduce a summing-up of this kind: but it is difficult to make a convincing emendation. The
 omitted by all the MSS. except N. Perhaps the grammatical structure

All the MSS. in 1.4 read $\pi \hat{a} \sigma a \iota$ except P , which has $\pi \hat{a} \sigma \iota . \quad$ Neither reading is entirely satisfactory. There seems no point in $\pi a \hat{\sigma} a \iota$, and $\pi \hat{a} \sigma \iota$ is not strictly true-or at least has not been shown to be true.
 conviction ' are presumably the mathematical arguments : cf. e.g. $969^{\text {b }} 30$.
${ }^{2}{ }^{2} \eta-9$. I adopt Hayduck's conjecture $\hat{\eta}\langle\dot{\eta}\rangle \dot{\epsilon} \kappa \pi \epsilon \rho \iota \tau \omega \nu$ and $\hat{\eta}\langle\dot{\eta}\rangle \dot{\epsilon} \xi$ dipriwn...

And (ii) it will follow that the part of a line is not a line, nor the part of a plane a plane. ${ }^{1}$

Further (iii) it will follow that one line is longer than another ro by a point ${ }^{2}$: for it is by its constituent elements that one line will exceed another. But that it is impossible for one line to be longer than another by a point, is clear both from what is proved in mathematics and from the following argument. For, if it were possible, the absurd consequence would result that the moving body would take a time to traverse the point. ${ }^{3}$ For, as it traverses the equal line in an equal time, it will traverse the longer line in a greater time : and that by which the greater time exceeds the equal time is itself a time.

Perhaps, however, we are to suppose that just as a line con- 16 sists of points, so also time consists of ' nows', and both theses belong to the same way of thinking. 〈Let us then examine the doctrine that a line, or generally continua, like times and lengths, consist of discrete elements. \rangle^{4}

In 1. 9 тà ä $\boldsymbol{\nu} \imath \sigma a$ is strange: Z^{a} omits τ á.
The reference is to the obscure argument at $970^{\circ} 26-33$.
${ }^{1}{ }^{a} 9,10$. If a line is made up of points, a plane on the same principle will be made up of lines: and the 'parts' of a line will be its 'points', and of a plane its 'lines'.
 $\sigma \tau เ \gamma \mu \eta \mathrm{~s}$ N] \&ivat $\mu \mathrm{i} i \zeta \omega \nu^{\circ}$

${ }^{3}{ }^{\text {a }}$ I3. $\tau \grave{\eta} \nu \sigma \tau t \gamma \mu \eta \nu$, i. e. the point, by which the longer line exceeds the shorter. I accept Hayduck's סitéval for the MSS. ס̀̀ civat.
${ }^{4}$ The writer is led off, by a possible rejoinder, to consider the view that time consists of 'nows'. But in the series of arguments which follows, the first argument alone directly mentions 'time' and 'nows': and though some of the subsequent arguments would apply to 'time' as well as to the line, many of them apply specially and only to lines. Hence I interpret $97 \mathrm{I}^{\mathrm{b}} 3$ and 4 as a corollary, and not as a summary: and I regard the whole of $\$ 4\left(971^{\mathrm{a}} 6-972^{2} 13\right)$ as a connected series of arguments to show that a line cannot consist of points. The order of the writer's thought is, I think, as follows :-
(I) $97 \mathrm{I}^{\mathrm{a}} 6-16$. Statement of the arguments which are fatal both to the doctrine that a line consists of indivisible lines, and to the doctrine that it consists of points: and statement of a new difficulty against the latter doctrine. This difficulty involves the conception of Time, and might be met by the rejoinder that Time, like Length, though continuous, consists of discretes. (2) $971^{\text {a }} 17-972^{a} 13$. A group of arguments to show that a line cannot consist of points, the view that Time consists of Nows being incidentally refuted. This group of arguments is based on a disjunction, thus:-The points cannot be united to form the line either (a) by $\sigma v \nu \epsilon \chi \chi \in a$ ($97 \mathrm{I}^{\mathrm{a}}$ 17-20), or (b) by $\sigma \dot{v} \nu \theta \epsilon \sigma t s\left(97 \mathrm{I}^{\mathrm{a}} 20-26\right.$), or (c) by $\dot{\text { í }}{ }^{\prime}\left(97 \mathrm{I}^{\mathrm{a}} 26 \mathrm{~B}^{\mathrm{b}} 26\right.$), or (d) by тò é $\phi \in \xi \hat{\eta} s\left(971^{\text {b }} 26-972^{\mathrm{a}} 6\right)$.
(a) Since, then, the Now is a beginning and end of a ${ }^{1}$ time, and the Point a beginning and end of a line; and since the beginning of anything is not 'continuous' with its end, but they have an interval between them; it follows that neither Nows nor Points can be continuous with one another. ${ }^{2}$
(b) Again, a line ${ }^{3}$ is a magnitude: but the 'composition' of points constitutes no magnitude, because several points put together occupy no more space than one. For when one line is superimposed on another and coincides ${ }^{4}$ with it, the breadth is in no wise increased. And since points too are contained in the line thus superimposed, it follows that neither would points, by being superimposed on points, occupy more space. Hence points would not constitute a magnitude by composition. ${ }^{5}$

Of these four alternatives $\sigma \dot{v} \nu \theta \epsilon \sigma t s$ is used by Aristotle as the general term to express any kind of combination of a manifold: cf. e. g. Top. $Z_{13}, 150^{b} 22, Z_{14}, 151^{\text {a }} 20-32$. Here, however, as we shall see, the writer appears to use it to express one special kind of combination. The remaining alternatives are treated by Aristotle as exhausting the ways in which points might be supposed to cohere to form a line: cf. Arist. Phys. $231^{a} 18 \mathrm{ff}$. Aristotle's definitions (Phys. 1.c.), which the writer here

${ }^{1}{ }^{\text {a }}$ 18. тov̂ χ рóvov, i.e. any given period of time.
${ }^{2} \mathbf{a}_{17-20}$. Two things are called 'continuous' when the end of one is identical with the beginning of the other. But the Nows and the Points are themselves Ends and Beginnings, or Extremes ($\epsilon \sigma \chi a \tau a)$, and cannot therefore be 'continuous' with one another.
${ }^{3}{ }^{\text {a }} 21 . \dot{\eta} \mu \dot{\varepsilon} \nu \gamma р а \mu \mu \dot{\eta}$ 'the line', i.e. any and every line: cf. 971^{a} 18, тoû хро́vov.
 каî тò B бquєîo émì тò E . . ."
${ }^{5}{ }^{2} 20-26$. In this argument the writer seems to be excluding a view that point is applied to point so as to 'compound ' a line. Line is length without breadth : and if line be applied to line, the two coincide, fall on one another, and do not produce a surface, i.e. do not 'increase the breadth ' of the first line. So point is position without magnitude, and no application (composition or addition) of point to point can produce magnitude-i.e. length. If the line $A B$ be applied to the line $C D$, the points in $A B$ will coincide with the points in $C D$; and as the line $C D$ is no 'broader' than it was before, neither will any point x in $C D$ be-
 come a length by 'composition' with the corresponding point y in $A B$. There is some difficulty in the text.

 the MSS. reading $\hat{\epsilon} \nu \delta \dot{\epsilon} \tau \hat{\eta} \gamma p a \mu \mu \hat{\eta}$. . . (Apelt's emendation $\epsilon i \delta \delta \bar{\epsilon} \tau \bar{j}$ $\gamma \rho a \mu \mu \eta$. . . does not suit the movement of the argument.) But I read
（c）Again，whenever one thing is＇contiguous＇with another， 26 the contact is either whole－with－whole，or part－with－part， or whole－with－part．But the point is without parts．Hence the contact of point with point must be a contact whole－ with－whole．${ }^{1}$

But if one thing is in contact with another whole－with－whole， the two things must be one．For if either of them is anything in any respect in which the other is not，they would not be in contact whole－with－whole．${ }^{2}$

But if the Simples 〈when in contact〉 are＜not＇one＇，but〉 3° ＇coincident＇，then a plurality occupies the same place which was formerly occupied by one ：for if two things are coincident and neither admits of being extended beyond the coincidence， just so far the place occupied by both is the same．And since $97 \mathrm{r}^{\mathrm{b}}$ the Simple has no dimension，it follows that a continuous magnitude cannot be composed of Simples．Hence neither can a line consist of Points nor a time of Nows．${ }^{3}$
in 1.25 ovo ${ }^{\prime} \stackrel{\rightharpoonup}{a} \nu\left\langle u \rho^{\prime}\right\rangle$ ai $\sigma \tau t y \mu \pi i$ ．．．，and alter the punctuation，so that the whole passage runs as follows：－

The principle that all contact must be whole－with－whole，or part－ with－part，or whole－with－part，is enunciated by Aristotle（Phys． $23 \mathrm{I}^{\mathrm{b}} 2$ ）， and applied similarly to dodaip $\epsilon \tau a$ and specially to points．
 I read $\tilde{\eta} \theta a ́ \tau \epsilon \rho o \nu$（cf．the Latin transl．＇si quid remanet quod alteri non coniungatur＇）．
 simul alterum complectitur ．．．
${ }^{3} \mathrm{a}_{2} 6^{-}{ }^{\mathrm{b}} 4$ ．The outline of the argument is as follows：－The contact of Points，quâ Simples，must be whole－with－whole．Now two things are ＇contiguous＇when their extremities are ä μa ，＇coincident＇or＇together＇． But since Simples have no parts－no extremities in distinction from the rest of themselves－the contact of Simples must mean absolute unity．If this be denied，and it be maintained that the＇contiguous＇ Simples are＇coincident＇，but remain＇two＇：it will follow that two or more Simples can be＇coincident＇without taking up more place than one Simple，and therefore（since one Simple has no dimension，i．e．no inner extension）no continuous magnitude can be composed of Simples．And a corollary of this is，that a line cannot consist of points，nor a time of＇nows＇．

In $97 \mathrm{I}^{\mathrm{b}}$ I I read，with LPW ${ }^{\mathrm{a}} \mathrm{Z}^{\mathrm{a}}$ ，єं $\pi \epsilon \in \kappa \tau a \sigma t \nu$, катà тav̂тa ó aùvòs $\kappa \tau \lambda$ ．Apelt＇s
 necessary．

4 (d) Further, if the line consists of points, point will be in contact with point. If, then, from K there be drawn the lines $A B$ and $C D$, the point B in the line $A(B) K$ and the point C in the line $K(C) D$ will both be in contact with $K .{ }^{1}$ So that the points B and C will also be in contact with one another : for the Simple, when in contact with the Simple, is in contact whole-with-whole. So that the points will occupy the same place as K, and, quâ in contact with K, will be in the same place with one another. But if they are in the same place Io with one another, they must also be in contact with one another : for things which are in the same 'continent' place must be in contact. ${ }^{2}$ But, if this is so, one straight line will touch another

${ }^{1}$ b 4 -6. The writer assumes for the present that, if a line is made

 up of points, the points within the line are in contact with one another. Having laid down this assumption, he then proceeds ($\dot{\varepsilon} \dot{a} v{ }^{3} v{ }^{3} v-:$ $0^{3} \nu$ is omitted by LP, but is required) to suppose that from the point K two lines, each consisting of points, are drawn. He calls these lines ' $A B^{\prime}$ ' and ' $C D$ ' ; but it is clear, from what follows, that the points B and C are the terminal points of the lines contiguous to K, i.e. that A and D are the end-points furthest removed from K.
$\because b_{7}-11$. This is directed to prove that, since B and C are in contact with K, they are also in contact with one another. The text is corrupt, and I have ventured to read and punctuate as follows:-

 à ${ }^{2}$ аккаiov.

For the meaning of $\pi \rho \dot{\epsilon} \tau \omega$, cf. e.g. Phys. $209^{\text {a }} 32 \mathrm{ff}$., кuì тóтоs ó $\mu \hat{\nu} \nu$
 ' proper' or 'primary ' place of a thing is further explained as that which contains precisely the thing and nothing more, i. e. the continent boundary of the thing. Cf. also Phys. 226^{b} 21-23.

The argument moves thus: ' B and C are in contact with K. But B and C are points, i.e. Simples. And contact of Simples is contact whole-with-whole, i.e. complete coincidence. Hence the "continent place" of B is identical with that of K, and the "continent place" of K is identical with that of C. And therefore the "continent place" of B is identical with that of C. But this means that B is in contact with C.'

 $\dot{a} \pi \tau \dot{\prime} \mu \epsilon \nu a t \quad \sigma \tau \iota \gamma \mu a i{ }_{\kappa} \tau \lambda$. This involves more change than the reading which I propose : and, after all, it is not satisfactory. For the writer shows that B and C, quâ points in contact with a third point, $K-\mathrm{i}$. e. quâ
straight line in two points. For the point (B) in the line $A K$ touches both the point $K C$ and another 〈viz. the point contiguous to C in the line $K(C) D\rangle$. Hence the line $A K$ touches the line $C D$ in more points than one. ${ }^{1}$

And the same argument would apply not only in the case 1_{4} supposed, where two lines were in contact with one another at the point K, but also if there had been any number of lines touching one another at K. ${ }^{2}$
in contact with K whole-with-whole --must have one and the same 'continent place' as K, and therefore as one another: and therefore must be in contact with one another. The nerve of the argument is contained in the words 'and the points, because in contact with K^{\prime} ': but Apelt's reading could only be translated 'Therefore the points which are in contact with K will also be in the same place as one another'. (Apelt's note on l. $9 \epsilon i \delta^{\prime} \epsilon^{\prime} \nu \tau \bar{\varphi} a v z \tau \bar{\varphi}$. . . 'scribendum potius videtur $\gamma \dot{\alpha} \rho$ ', shows that he has failed to follow the writer's argument.)
${ }^{1} b_{11-14}$. The writer, having proved that the terminal points B and C are in contact at K, shows that the two straight lines $B A$ and $C D$ will be in contact at more than one point $-\mathrm{v} . \mathrm{g}$. at x, since C is in contact with x and B with C.

At I. II I adopt Hayduck's $\epsilon i \delta^{\prime}$ oúv $\omega \boldsymbol{c}$ for the MSS. $\epsilon i^{i} \theta^{\prime}$ ouvtos, and I read a full stop before these words.

At ${ }^{b_{12}, ~ I 3 ~ I ~ r e a d ~ к a i ~ \tau \hat{\eta}} \mathrm{Kr}$ (for the MSS. кaì $\tau \hat{\eta} \mathrm{K} \Gamma$) каi $\in \tau \epsilon \in \rho a s .$. Apelt follows Hayduck in reading kai $\langle\tau \bar{\eta} s \hat{\epsilon} v\rangle$ गो $\mathrm{K} \mathrm{\Gamma}$. But ' $\mathrm{K} \mathrm{\Gamma}$ ' is the $\sigma \tau \iota \gamma \mu$ ' $\mathrm{K} \mathrm{\Gamma}$, not the $\gamma \rho a \mu \mu \eta$. If
 the writer had meant the line, he would have written $K \Delta$ or $\Gamma \Delta$ as in 1. 6 or in 1. 13 ($\tau \hat{\eta} s \Gamma \Delta$).

Finally, in l. I3 I read (with Hayduck and Apelt) $\tilde{\omega} \sigma \tau \epsilon \dot{\eta}$ AK in place of

 $\left.Z{ }^{a}\right]$. I have adopted Apelt's conjecture каі єi $\mu \dot{\eta} \delta \hat{v}^{\prime} \dot{a} \lambda \lambda \dot{\eta} \lambda \omega \nu$,
 If this is right, we must suppose a number of lines, e.g. $A B$, $C D, E F, G H, I J$, all drawn from K. The points A, C, E, G, I, qua all in contact with K, are all in contact with one another: and also severally in contact with the points x, y, z, p, q. Hence the lines $A B, C D, E F, G H$, $I J$ will be in contact with one another at more points than one.

(e) Further, if a line consist of points in contact with one another, the circumference of a circle will touch the tangent at more points than one. For both the point on the circumference and the point in the tangent touch the point of junction and also touch one another. ${ }^{1}$ But since this is not possible, neither is it possible for point to touch point. And if point cannot touch point, neither can the line consist of points: for if it did, they would necessarily be in contact. ${ }^{2}$
(f) Moreover, how-on the supposition that the line consists of points-will there any longer be straight and curved lines? For the conjunction of the points in the straight line will not differ in any way from their conjunction in the curved line. For the contact of Simple with Simple is contact whole-withwhole, and Simples admit no other mode of contact. Since, then, the straight and curved lines are different, but the conjunction of points is invariably the same, clearly a line will not be curved or straight because of the conjunction : hence neither will a line consist of points. ${ }^{3}$

${ }^{1}{ }^{b_{1}}{ }_{5}-18$. Let the circumference of the circle $D E A$, and let the tangent $C B$, both consist of points. The point of juncture, x, will be in contact with the point B of the tangent $C B(x)$, and also with the point A of the circumference $D E A(x)$: hence the point A will also be in contact with the point B. And the tangent $C B(x)$ will touch the circumference $D E A(x)$, at A, at x, and at B.
${ }^{2}$ b $_{18-20 \text {. In } 1.20 \text { I read, with Hay- }}$
 $\sigma \tau \iota \gamma \mu \dot{\eta} \nu$. Perhaps we ought to read ϵ^{κ}

Apelt defends oủס́ ' si linea ex punctis constaret, necessario a contactu excluderetur (quod tamen fieri nequit)'. And, in his German translation, he interprets ' Denn sie (die Linie) wäre dann notwendig von der Berührung ausgeschlossen'. But the Greek cannot mean this : nor, if it could, would there be any valid argument in the words.
${ }^{3}{ }^{\text {b }} 20-26$. In 1.24 I read (with Apelt and Hayduck) $\tilde{i t}^{\prime} \lambda \lambda \omega s$ ä $\pi \tau \epsilon \sigma \theta a \iota$ for the MSS. ${ }^{\circ} \lambda \omega s\left[{ }_{0}{ }^{\circ} \pi \omega s \mathrm{~W}^{a}\right] \tilde{a} \pi \tau \epsilon \sigma \theta a t$.
11. 24-26 are difficult. I take the writer to mean: ' The theory might attempt to distinguish Straight from Curved, on the ground that point is attached to point differently in these different types of line. But points are Simples, and therefore point can be attached to point in one way only. Hence we cannot derive the different characters of the straight and curved
(g) Further, the points (of which the line consists) must 26 either touch or not touch one another. Now if 'the next' in a series must touch the preceding term, the same arguments, which were advanced above, will apply: but if there can be 'a next' without its being in contact <with its predecessor or successor \rangle, yet by 'the continuous' we mean nothing but a composite whose constituents are in contact. So that the points forming the line must be in contact, in so far as the line must be continuous, even though we suppose the points to be a'series '. ${ }^{1}$

 eipquéva eival. ${ }^{2} \dagger$ For if the points form a series without
lines from a difference in the mode of contact of their points. And so the theory that lines consist of points in contact breaks down : for it cannot account for the difference between straight and curved.'

In ${ }^{b_{2}} 5^{5}$ one may suspect some corruption in the text. The MSS. read
 translation- 'non fiet ex punctorum contactu linea circularis et recta.'
${ }^{3}{ }^{3} 26-31$. The writer has shown that the points, of which the line is supposed to consist, cannot be regarded as united (a) by $\sigma u v \in \chi \in \epsilon \tau$, (b) by

 constitute 'a series', that they are united by to ' | |
| :---: |$\xi_{\xi} \eta$ s. (Cf. above, note on 971^{*} 16.) He urges here that, whatever may be the case with some 'series', the series of points must be a series whose members are contiguous, since utherwise they would not form a continuum-i. e. they would not form a line. It appears from Phys. $227^{\text {a }} 17-23$ that all continua must have their parts 'in contact': and all things ' in contact' must be $\epsilon^{\prime} \phi \epsilon \xi \bar{\eta} \mathrm{s}$. But there may be $\tau \dot{o} \dot{\epsilon} \phi \epsilon \xi \bar{\eta} s$ without 'contact' (e.g. the numerical series), and there may be 'contact' without the contiguous plurality constituting a continuum.

 єival $\gamma \rho a \mu \mu \eta ̀ \nu$ बvve $\chi \hat{\eta}$.
 ci in l. 28. The $\delta \dot{\varepsilon}$ is resumptive. кai oüт由s, viz. even supposing that the points are $\boldsymbol{\epsilon} \phi \epsilon \xi \eta \eta_{s}$.

 given by Rota, ' quod est ex se tangentibus compositum.'
${ }^{2}{ }^{\text {a }} 1-3$. The text is here hopelessly corrupt. Apelt conjectures $\tilde{\varepsilon} \tau i$, ϵi
 ϵ emime $\delta o \nu \kappa \tau \lambda$. : and (v. prolegg., p. xxii) interprets 'si fieri nequit ut puncto iuxta positum punctum adiungatur, quatenus ne linea quidem puncto iuxta posita adiungi potest neque planum lineae...' But I do not see how he could defend this translation of his Greek : nor do I see how $97 \mathbf{2}^{\text {a }}$ 3-6 connect with this opening sentence. In his German translation
contact, the line will be divided not at either of the points, but between them : whilst if they are in contact, a line will be the place of the single point. And this is impossible. ${ }^{1}$
6. (j) Further, all things would be divided, i.e. be dissolved, into points ; and the point would be a part of a solid, since the solid-on the theory-consists of planes, the plane of lines, and the lines of points. And since those constituents, of which (as their primary immanent factors) the various groups of things are composed, are 'elements', points would be ' clements' of bodies. Hence 'elements' would be identical in nature as well as in name, and not even specifically different. ${ }^{2}$ $\therefore \quad \S 5$. It is clear, then, from the above arguments that a line does not consist of points. ${ }^{3}$
(a) But neither is it possible to subtract a point from a line. For, if a point can be subtracted, it can also be added. But if anything is added, that to which it was added will be bigger than it was at first, if that which is added be such as to coalesce and form one whole with it. ${ }^{4}$ Hence a line will be bigger than another line by a point. ${ }^{5}$ And this is impossible.

But though it is not possible to subtract a point as such from a line, one may subtract it incidentally, viz. in so far as a point
 auch eine Linie auf einem Punkte sein kann': but one may envy, without wishing to imitate, this free-and-easy attitude to Greek Grammar. It seemed best to own myself defeated, and simply to print the original Greek.
${ }^{1}{ }^{2} 3-6$. For the argument, cf. above, $97 \mathrm{I}^{\mathrm{a}} 28 \mathrm{ff}$. But what bearing has this dilemma ($\epsilon i \tau \epsilon ~ \gamma \grave{a} \rho$. . . єíd äntovтat) on the preceding lines?
${ }^{2}{ }^{2} 6-11$. In 1. 11 I read with Apelt, after the MS. Wa, ovó ${ }^{\text {ét } \tau \in \rho a, ~ f o r ~}$ Bekker's ov̇ס́ṫєpa.

The common name ' σ roizeiov' would indicate a genuine identity of nature in the different things called 'elements': indeed, complete identity of nature, and not merely generic identity with specific differences.
$\ln 1.10$ ש̈кабта means, of course, not each thing, but each group or kind of thing.
${ }^{3}$ The writer has shown that a line is not in any sense a sum of points. He now shows that you cannot speak of subtracting a point from a line : and from this proceeds to criticize other erroneous statements about 'points'.
 ' ξ dip $\chi \hat{\eta} s$.

Apelt conjectures тò ※ं $\pi \rho \circ \sigma \epsilon \tau \in \dot{\varepsilon} \theta \eta \mu \hat{i}\} o \nu \kappa \tau \lambda$., and this seems undoubtedly right. The corruption may have arisen from the mistaken assumption that $\tau 0 \hat{v} \epsilon \dot{\epsilon} \xi \rho \chi \bar{\eta} s$ means ' than the original quantum '.

is contained in the line which one is subtracting from another line. For since, if the whole be subtracted, its beginning and zo its end are subtracted too; and since the beginning and the end of a line are points: then, if it be possible to subtract a line from a line, it will be possible also thereby to subtract a point. But such a subtraction of a point is incidental or per accidens. ${ }^{1}$
(b) But if the limit toucles that of which it is the limit (touches either it or some one of its parts), and if the point, quat limit of the line, touches the line, then the line will be greater than another line by a point, and the point will consist of points. For there is nothing between two things in contact. ${ }^{2}$

The same argument applies in the case of division, since the 28 'division' is a point and, qua dividing-point, is in contact with something. It applies also in the case of a solid and a plane. And the solid must consist of planes, the plane of lines, just as (on the theory) the line consists of points. ${ }^{3}$

[^136](c) Neither ${ }^{1}$ is it true to say of a point that it is 'the smallest constituent of a line'.
(i) For if it be called 'the smallest of the things contained in the line', what is 'smallest' is also smaller than those things $97 \mathbf{2}^{\mathbf{b}}$ of which it is the smallest. But in the line there is contained nothing but points and lines : and the line is not bigger than the point, for neither is the plane bigger than the line. ${ }^{2}$ Hence the point will not be the smallest of the constituents in the line. ${ }^{3}$
(ii) And if the point is comparable in magnitude with the line, yet, since 'the smallest' involves three degrees of comparison, ${ }^{+}$the point will not be the smallest of the constituents of the line: or ${ }^{5}$ there will be other things in the length besides
we must not regard division as 'dividing a point', or as itself a 'point of dividing'. But if not, how can a line - which ex hypothesi is nothing but 'points in contact'-be 'divided'?

The writer then briefly reminds us that, if a line consists of points in contact, on the same principle a plane is a sum of lines, a solid a sum of planes, in contact with one another: and if we thus conceive solids and planes, 'the same argument' will apply to them. One plane, e.g., will be greater than another by a line, one solid greater than another by a plane, if we are able to 'subtract' a line from a plane, and a plane from a solid; and we shall get into difficulties with 'division'.
${ }^{1}$ a 30 ff . We have seen that we must not predicate 'contact', 'addition', 'subtraction', or 'division' of the points in a line. In the following arguments the writer shows that we must not say of a point that it is 'the smallest constituent of a line'. No doubt he is attacking a current definition.

The reading, which I have translated, is based on suggestions of Hayduck and Apelt: but I have aitered Apelt's punctuation, and sub-stituted γ^{\prime} for $\delta \delta^{\prime}$ in 1. 33. I read the whole passage thus:-оiк ad $\lambda_{\eta} \theta \dot{\epsilon} s \delta^{\delta} \dot{\epsilon}$

${ }^{3} b_{2}-4$. The writer assumes that the other constituents of the line, i.e. those presupposed in calling the point ' the smallest' constituent. are infinitesimal ('indivisible') lines : and the point is not smaller than these.
 sumably we are to suppose that (according to the theory) just as the line consists of infinitesimal lines=points, so the plane consists of plones-of-infinitesimal-breadth $=$ lines.
 sense elsewhere in Aristotle.

the points and lines, so that it will not consist of points. ${ }^{1}$ But, since that which is in place is either a point or a length or a plane or a solid, or some compound of these: and since the constituents of a line are in place (for the line is in place) : and since neither a solid nor a plane, nor anything compounded of 10 these, is contained in the line:-there can be absolutely nothing in the length except points and lines. ${ }^{2}$
(iii) Further, since that which is called 'greater' than that which is in place is a length or a surface or a solid : then, since the point is in place, and since that which is contained in the length besides points and lines is none of the aforementioned: -the point cannot be the smallest of the constituents of a length. ${ }^{3}$
(iv) Further, since 'the smallest of the things contained in 17 a house' is so called, without in the least comparing the house with it, and so in all other cases:- neither will the smallest of the constituents in the line be determined by comparison with
to be required by the logic of the passage. The writer propounds a dilemma :-
(I) If there are only two kinds of constituent in the line, one of those kinds (viz. the point) cannot be the 'smallest';
(2) If, on the other hand, there are more than two kinds of constituent in the line, there must be something other than points and lines contained in it. This he shows to be impossible in the following argument.
 be retained, we must translate 'For, on this supposition, it will no longer consist of points '.

In ${ }^{\mathrm{b}} 7 \tau \hat{\hat{\omega}} \mu \boldsymbol{\eta} \kappa \in \iota$ is substituted for $\tau \hat{\eta} \gamma \rho a \mu \mu \hat{\eta} . \quad \gamma \rho а \mu \mu \dot{\eta}$ is determinate $\mu \bar{\eta} \kappa о s$, $\dot{\epsilon} \pi \iota \emptyset \dot{\nu} \epsilon \iota a$ determinate $\pi \lambda a ́ r o s$, and $\sigma \hat{\omega} \mu a$ determinate $\beta \dot{\theta} \theta o s$, according to Arist. Met. $1020^{2}{ }^{13}$.

The argument is :-The point is 'in place', i. e. a spatial thing. What is greater than the point, therefore, must be either a line or a plane or a solid. Now, in a length there can be contained neither plane nor solid. Hence there can at most be contained in a length one order of spatial thing (viz. line) which is greater than the point. Hence we are at most entitled to apply the comparative ('smaller'), and not the superlative ('smallest'), to the point in relation to the other constituents of the line.

It is possible, I think, that we should excise $\epsilon \mathfrak{l}$ in ${ }^{1} 13$, and read $\epsilon \tau \iota$ tov द̀ ν то́т $\varphi \kappa \pi \lambda$.
the line. Hence the term 'smallest' applicd to the point will not be suitable. ${ }^{1}$
(v) Further, that which is not in the house is not the smallest of the constituents of the house, and so in all other cases. Hence, since the point can exist per se, it will not be true to say of it that it is 'the smallest thing in the line '.'2
(d) Lastly, the point is not an ' indivisible joint '. ${ }^{3}$

For (i) the joint is always a limit of two things, but the point is a limit of one line as well as of two. Moreover (ii) the point is an end, but the joint is more of the nature of a division.

Again (iii) the line and the plane will be 'joints' \langle too \rangle : for they are analogous to the point. Again (iv) the joint is in a sense on account of movement (which explains the verse of Empedocles ${ }^{4}$) : but the point is found also in the immovable things. ${ }^{5}$
(v) Again, nobody has an infinity of joints in his body or his hand, but he has an infinity of points. ${ }^{6}$ (vi) Moreover, 3^{1} there is no joint of a stone, nor has it any: but it has points.
 The MSS. give $\mu i, \tau \epsilon \tau \hat{\eta} s \kappa \tau \lambda$. Hayduck proposed $\mu \dot{\eta} \tau \hat{\eta} s$, and Apelt

The writer seems to be meeting a possible objection. For it might be said : 'It is mere pedantry to object to the superlative. All we meant was that the point is smaller than the infinitesimal lines, or at any rate than the whole line.'

The writer criticizes the definition on the ground that it assumes that the point is essentially' a constituent of a line, i. e. has no being except in a line.
${ }^{3} \mathbf{b}_{25}$. We must not describe the point as 'an indivisible joint'. We do not know who thus described it, but no doubt the writer is attacking a current description.

 סıaфорá or ס́á申ороv] $\pi \omega s$ éбтiv

What the verse of Empedocles was, is unknown : the MSS. give ' δ i, iei ijptês', for which Diels (Vorsukratiker, 2nd ed., vol. I, p. I84) brilliantly conjectures $\delta v \dot{v} \omega$ $\delta \epsilon \in \epsilon ~ " מ p \theta \rho o v$, 'the joint binds two'.
 unintelligible, and Hayduck is no doubt right in excising it.
${ }^{6}{ }^{\text {b }} 31$. The MS. L exhibits $\sigma \tau o ́ \mu a \tau \iota$ for $\sigma \dot{\omega} \mu a \tau \iota$ in its margin. But this looks like a correction. The argument is a fortiori. 'In one's body-nay, even in one's hand-there are an infinity of points. . . .'

VENTORUM SITUS

 ET COGNOMINABY

E. S. FORSTER

OXFORD
AT THE CLARENDON PRESS

PREFACE

This short extract from the Pcripatetic treatise De Signis, usually attributed to Theophrastus, is chiefly interesting for comparison with the charts of the winds given in the Meteorologica and De Mundo. The text used for this translation is that of O. Apelt, ${ }^{1}$ who has in the main followed V. Rosc's edition ${ }^{2}$; the latter is a great improvement on Bekker's text.

I have to thank Mr. W. D. Ross and my colleaguc, Professor W. C. Summers, for several suggestions.
${ }^{1}$ Aristotelis quae feruntur De Plantis etc. (Leipzig: Teubner, 1888).
${ }^{2}$ Aristotelis quae feruntur librorum fragmenta (pp. 199-201) (Leipzig: Teubner, I886).

VENTORUM SITUS ET APPELLATIONES EX ARISTOTELIS LIBRO DE SIGNIS

Boreas (the North Wind). At Mallus this wind is called 973^{a} Pagreus ; for it blows from the high cliffs and two parallel ranges known as the Pagrean Mountains. At Caunus it is called . . .

Meses ${ }^{1}$ (the North-North-East Wind). . . . In Rhodes it is known as Caunias; for it blows from Caunus, causing 5 storms in the harbour of that place. At Olbia, near Magydum in Pamphylia, it is called Idyreus ; for it blows from an island called Idyris. Some people identify Boreas and Meses, amongst them the Lyrnatians near Phaselis.

Caecias (the North-East Wind). In Lesbos this wind is called Thebanas; for it blows from the plain of Thebe, ıo north of the Elaitic Gulf in Mysia. It causes storms in the harbour of Mitylene and very violent storms in the harbour of Mallus. ${ }^{2}$ In some places it is called Caunias, which others identify with Boreas.

Apeliotes (the East Wind). This wind is called Potameus at Tripolis in Phoenicia; it blows from a plain resembling a great threshing-floor, which lies between the mountains I_{5} of Libanus and Bapyrus; hence it is called Potameus. ${ }^{3}$
${ }^{1} 973^{\text {a }}$ 4. Meses must certainly be mentioned here as a separate wind, the NNE. wind: (I) unless a wind other than Boreas is de-
 sense; (2) Meses is described in Meteor. $363^{\mathrm{b}} 30$ as a separate wind between Boreas and Caecias; (3) it is called Caunias at Rhodes, and Caunus is NNE. of Rhodes; (4) Meses is a very general term (see Meteor. $363^{\mathrm{b}}-364^{\mathrm{b}}$ passim) and would not be confined to Caunus. We must therefore suppose lacunae (such as occur also in this treatise at

 points of the compass are inserted, e.g. Thracias, $973^{\text {b }}$ I7.
${ }^{2} 973^{\text {a }}$ II. Reading Ma入入óє $\boldsymbol{\tau} \tau a$.
${ }^{3} 973^{\text {a }}$ 16. The reason for this name does not seem obvious, unless this plain was called Potamus.

It causes storms at Posidonium. ${ }^{1}$ In the Gulf of Issus and the neighbourhood of Rosus it is known as Syriandus; it blows from 'the Syrian Gates ', the pass between ${ }^{2}$ the Taurus and the Rosian Mountains. In the Gulf of Tripolis 20 it is called Marseus, from the village of Marsus. In Proconnesus, Teos, Crete, Euboea, and Cyrene it is known as Hellespontias. It causes storms in particular at Caphereus in Euboea, and in the harbour of Cyrene, which is called Apollonia. It blows from the Hellespont. [At Sinope it is ${ }^{25}$ called Berecyntias, because it blows from the direction of Phrygia. ${ }^{3}$ In Sicily it is known as Cataporthmias, because 973^{b} it blows from the Straits. Some people identify it with Caecias, and also call it Thebanas.

Eurus (the South-East Wind). This wind is called Scopeleus at Aegae, on the borders of Syria, after the cliff ${ }^{4}$ at Rosus. In Cyrene it is known as Carbas after the Car5 banians in Phoenicia; wherefore some people call this same wind Phoenicias. Some people identify it with Apeliotes.

Euronotus ${ }^{5}$ (the South-South-East Wind). Some call this wind Eurus, others Amneus.

Notus (the South Wind) bears the same name everywhere. It is derived from the fact that this wind is unwholesome, while out of doors it brings showers ; thus there are two reasons for its name. ${ }^{6}$

Leuconotus (the 'white' or 'clearing' South Wind)
${ }^{1} 973^{\text {a }}$ 16. Пoбeiotov, a harbour on the Syrian coast (Strabo, p. 751), should perhaps be read here.
${ }^{2} 973^{\text {a }}$ 18. Reading ais for äs.
${ }^{3} 973^{\mathrm{a}} 24,25$. This passage is obviously misplaced. The east wind could not possibly be called Berecyntias at Sinope, because Sinope is east of Berecynthia. The statement should probably be transferred to Zephyrus.
${ }^{4} 973^{\text {b }}$ 4. i. e. $\Sigma к о \pi \epsilon \lambda \epsilon u ́ s$ from $\sigma к o ́ \pi \epsilon \lambda o s$.
${ }^{5} 973^{\text {b }} 6$. 'OpӨóvotos, the reading of the MS., can only mean 'the True South Wind', which seems superfluous, when vótos is mentioned immediately afterwards, nor would any confusion be likely to arise between 'the True South Wind ' and Eurus. Rose suggests 'op θ póvotos, 'the Morning South Wind,' a word not found elsewhere. Eủpóvoros seems to suit the sense better and is used in Meteor. $363^{\mathrm{b}} 22$ and De Mundo $394^{\text {b }} 33$ for the wind between Eurus and Notus, i.e. the SSE. wind.
${ }^{6} 973^{\text {b }}$ 8. i. e. two derivations are given for vótos, (I) vorídins, unhealthy, and (2) vóтtos, damp (=кáтоцßроs, showery).
likewise derives its name from its effect; for it clears the sky. ${ }^{1}$

Lips (the South-West Wind). This wind gets its name from Libya, whence it blows.

Zephyrus (the West Wind). This wind is so named because it blows from the west, and the west . . .

Iapyx (the North-West Wind). At Tarentum it is called Scylletinus from the place Scylletium. At Dorylaeum in 1_{5}

Chart of the Winds to illustrate Aristotle, Ventorum Situs et Appellationes. ${ }^{2}$

Phrygia 〈it is called〉. . . Some people call it Pharangites, because it blows from a certain ravine in Mount Pangaeus. Many call it Argestes.

Thracias (the North-North-West Wind) is called Strymonias in Thrace, for it blows from the river Strymon ; in the Megarid it is known as Sciron, after the Scironian
${ }^{1} 973^{\mathrm{b}}$ 10. Leuconotus is apparently the SSW. Wind.
${ }^{2}$ For a chart of the various systems of winds in Aristot. Meteor. and De Mundo and in Seneca sce W. Capelle, Die Silhrift zon der Welt, Neue Jahrb. xv. (1905) p. 542.

20 cliffs, in Italy and Sicily it is called Circias, because it blows from Circaeum. In Euboea and Lesbos it goes by the name of Olympias, which is derived from Pierian Olympus; it causes storms at Pyrrha. ${ }^{1}$

I have drawn the circle of the earth and indicated the positions of the winds, and the directions in which they 25 blow, so that they may be presented to your vision.
${ }^{1} 973^{\text {b }} 23$. The use of the ethnicon חuppaîo instead of the place-
 ยง้คเтоข.

DE MELISSO

XENOPHANE GORGIA

BY
T. LOVEDAY and E. S. FORSTER

OXFORD
AT THE CLARENDON PRESS
1913

INTRODUCTION

The date and authorship of this interesting treatise have been the subject of considerable controversy. Diels, its latest editor, whose text (Berlin, 1900) has been used for this translation, attributes it to an eclectic Peripatetic of the first century A.D. O. Apelt's text (Teubner, 1888) and Professor J. Cook Wilson's invaluable notes in his review of that edition (C.R. vols. vi and vii) have also been constantly before us.

Mr. W. D. Ross has read the translation both in manuscript and proof and made a number of valuable suggestions and emendations.

E. S. F.

CONTENTS

CHAP.
I. Views of Melissus.
2. Criticisms of Melissus.
3. Views of Xenophanes.
4. Criticisms of Xenophanes.
5. Views of Gorgias.
6. Criticisms of Gorgias.

DE MELISSO, XENOPHANE, GORGIA

DE MELISSO

I Melissus says that, if anything is, it is eternal, since it is impossible that anything can come into being from nothing. For suppose that cither all things or some things have come into being, in either case they must be eternal ; for otherwise, in coming into being, they would do so out of nothing. For if all things come into being, then nothing 5 can pre-exist ; whilst if some things were ever and others are added, that which is must have become more and greater, and that by which it is more and greater must have arisen out of nothing ; for the more is not originally existent in the less, nor the greater in the smaller.

Being, since it is eternal, is unlimited; for it has no beginning from which it has come into being, and no end io in which, when it comes into being, it can ever terminate.

Being all and unlimited it is one; for if it were two or more, these would be reciprocal limits.

Being one it must be similar throughout; ${ }^{1}$ for if it were dissimilar, it would be several and therefore no longer one but many.

Being eternal and unlimited and alike throughout, the One is without motion; for it could not move without I_{5} passing somewhere else, and it can only pass either into that which is full or into that which is empty; but of these the former could not admit it, while the latter is nothing at all.

Such being the nature of the One, it is unaffected by grief and pain, and is healthy and free from disease, and cannot change cither by transposition ${ }^{2}$ or by change of 20 form ${ }^{3}$ or by mixture with anything else; for under all

[^137]these circumstances the One becomes many, and Not-being is necessarily generated and Being destroyed; but these are impossibilities. For, indeed, if it were maintained that any One is the result of a mixture of several constituents25 suppose, that is, that things were many and moved into one another, and that their mixture were either by way of the composition of the many in one, or, being due to the constituents fitting in with one another, resulted in their covering one another from view-then in the former case the constituents mixed would be easily discernible, being distinct; ${ }^{1}$ whilst, if they covered one another, ${ }^{2}$ rubbing would reveal each constitucnt, the successive blayers being uncovered as the upper layers were removed. ${ }^{3}$ Now neither of these things happens. But according to Melissus it is only in these ways that a Many could both be and also appear to us; and since these ways are impossible, that which is cannot be manifold, and the belief 5 that it is manifold is erroneous, like many other fancies which are due to the senses; but argument does not prove either that things come into being or that what is, is many, but that it is one and eternal and unlimited and similar throughout.

Now surely one ought firstly to begin by taking not any and every opinion, but those which are most indis10 putable. If, then, all our opinions are incorrectly conceived, it is perhaps quite wrong to adopt this doctrine too, that nothing can ever come into being out of nothing; for this is but a single ${ }^{4}$ opinion and an incorrect one too, which we somehow all of us ${ }^{5}$ have often been led to conceive from our sense-perceptions. But if not all that appears to ${ }_{5} 5$ us is false, and some conceptions even of objects of sense are correct, either one ought to demonstrate the nature of such a correct conception and then adopt it, or else demonstrate and adopt those which appear most likely to be

[^138]correct; and these must always be more indisputable than the conclusions which are apt to follow from the arguments of Melissus. For supposing that we really had to do with two contrary opinions, as Melissus thinks (his arguments 20 show that he thinks so, viz. if there is a Many, it must needs arise from what is not; and if the consequent is impossible, what is, is not many ; for, being ungenerated, anything which is, is unlimited, and therefore one), supposing this so, still, if we admit both propositions equally, unity is no more proved than multiplicity, and it is only if one proposition is more indisputable than the other, that ${ }_{25}$ the conclusions following from it are better proved. Now, as a matter of fact, we do entertain both these conceptions, namely, that nothing can come to be out of nothing, and also that existents are many and are in motion; and of the two the latter is more generally credited, and every one would more readily give up the former opinion than this. Now if it were the case that the two propositions are contrary to one another, and it were impossible that at the $975^{\text {a }}$ same time nothing should come to be out of Not-being, and there should be a multiplicity of things, ${ }^{1}$ each of these views would refute the other. But why should his premisses be correct? Some one else might assert the exact opposite. For he has not argued his case either by showing that it is a correct opinion from which he starts, 5 or by taking a more certain opinion than that with which his proof is concerned. For it is usually considered more likely that Being arises out of Not-being than that there is not a multiplicity of things; it is confidently asserted about existents that things which do not exist come into being, nay, often have come into being out of non-existents, and those who have asserted this are no ordinary men, but some of those who are looked upon as sages. To begin ıo with, Hesiod says :

First of all in the world was Chaos born, and thereafter Broad-bosomed earth arose, firm seat of all things for ever, And Love that shineth bright amid the host of Immortals. ${ }^{2}$

[^139]All other things, he says, came into being from these, but these came into being out of nothing. Secondly, there ${ }_{15}$ are many who say that nothing is but all things become, declaring that whatever becomes does not arise from existents ; for, if what becomes arose from existents, then their statement that all things become would be false. So much, therefore, is clear, that there are some people of the opinion that becoming even out of non-existents is possible.

But had we not better leave aside the possibility or 2 impossibility of his conclusions, and confine ourselves to what may very well be a distinct problem-namely, 20 whether these conclusions follow from the premisses which he takes, or other conclusions might logically be derived from these premisses? And first of all, granted his first assumption, that nothing can come to be from Not-being, does it necessarily follow that all things are ungenerated ? Or is there no reason why one thing should not have come to be out of another, and so on in an endless series? Or ${ }_{25}$ may it not go on in a circular process, in such a way that one thing has come to be out of another, there thus being always something in existence, and all things having come to be out of one another an endless number of times ? In that case, although it be agreed that nothing can come to be out of Not-being, everything may very well have come to be. (And none of the attributes which are attached to the One prevents our calling existents unlimited in Melissus's sense of the word. ${ }^{1}$ For he himself attributes to 30 the unlimited that it actually is, and is synonymous with, all. And even if existents are not unlimited, there is no reason why they should not come to be by the circular process. ${ }^{2}$) Further, if all things come to be and nothing is, as some declare, how can they be eternal? Yet he certainly argues as though the existence of something were real and agreed. 35 For, he says, if a thing has not come to be but is, it must be eternal, as though Being were necessarily inherent in

[^140]things. Morcover, however impossible it may be for Notbeing to come to be, or for Being to be destroyed, yet what prevents some existing things from having come to be and others from being eternal, as Empedocles also affirms ? For after admitting all this, namely, that

Out of that which is not can nothing come into being ; And whatsoever exists, no art nor device can destroy it; For it will always abide, where'cr 'tis implanted, for ever, ${ }^{1}$ he yet declares that of existents some are cternal, namely, fire, water, earth, and air, but that the rest of things come 5 to be and have come to be out of thesc. For in his opinion there is no other process whereby existents can come to be,

Save the mingling of things and exchanging of things that are mingled;
This in the speech of men is called the work of Begetting. ${ }^{2}$
But he denies that the Being of the eternal things and of what really is, is the result of a process of coming to be ; for this he considers impossible. For he says:

How could aught bring increase to the All and whence have arisen ? ${ }^{3}$
But the Many come to be by the mixture and composition of fire and the other elements, and perish again when those elements are exchanged and separated ; that is, by mixture and separation many things are at any time, but by nature there are only four ${ }^{4}$ apart from the Causes, ${ }^{5}$ or else I_{5} only one. ${ }^{6}$ Or again if these elements out of the composition of which things come to be, and by the dissolution of which they are destroyed, were from the first unlimitedwhich is what some affirm that Anaxagoras ${ }^{7}$ means when he says that things which come to be do so out of things that are ever-existent and unlimited-even so not all things would be eternal, but there would be some things coming 20 to be and having come to be from things that are, and

[^141]passing by destruction into other modes of Being. Furthermore, there is no reason why one form should not constitute the All (as Anaximander ${ }^{1}$ and Anaximenes say, the former declaring that the All is water, while Anaximenes says that it is air, and as others say who have contended along these
${ }_{25}$ lines that the All is one), and why this, by assuming various shapes and greater or less bulk-that is, by coming to be in a rare or dense state-should not make up the many unlimited objects which exist and come to be and compose the whole. Again, Democritus declares that water and air and each of the many things that exist are essentially the same, but differ in their rhythm. ${ }^{2}$ Why should not the 30 many come to be and be destroyed even in this way, the One changing continually from Being to Being by the abovementioned differences, and the whole becoming not a whit either greater or less? Furthermore, why should not bodies from time to time come to be from other bodies and be dispersed into bodies, and thus by dissolution the processes of generation and decay always balance one another?

But if one were to make these concessions and allow that 35 Being both exists and is ungenerated, how is its unlimitedness thereby more clearly demonstrated ? For Melissus declares it to be unlimited, if it exists but has not come to be; for the beginning and end of the process of coming to be are, he says, limits. Yet what in his argument prevents a thing which is ungenerated from having a limit? For if a thing has come to be, he contends that it has as a begin$976^{\text {a }}$ ning that from which it began coming to be. Now why should it not have a beginning, even if it has not come to be-not, however, one from which it has come to be, but some other-and why should not existents, though eternal, be limited in relation to one another? Again, why should not the whole, being ungenerated, be unlimited, but the 5 things which come to be within it be limited by having a beginning and end of coming to be? Again, as Parmenides says, what prevents the All, though it be one and

[^142]ungenerated, from being nevertheless limited and, to use his words,

Like to the mass of a sphere on all sides carefully rounded, Everywhere equally far from the midst; for Fate hath appointed
That neither here nor there should it either be greater io or smaller? ${ }^{1}$

Now, if it has a centre and extremitics, it has a limit though it is ungenerated ; since if it be one and a body, as Melissus himself asserts, it has parts of its own as well, and these all alike. For when he says that the All is similar, he does not use the term of similarity to something else (this is just the point that Anaxagoras ${ }^{2}$ raises in disproving that the unlimited is similar, i. c. that what is similar is similar ${ }_{5} 5$ to something else, so that being two or more it would no longer be one, nor yet unlimited), but perhaps he means similar in relation to itself-in other words, that it is composed of similar parts, being all water or earth or something clse of the kind. For he clearly holds that in this case Being would be one; but each of the parts being a body is not unlimited (for it is the whole which is unlimited), 20 and therefore they are limited in relation to one another, although they are ungenerated.

Further, if Being is both eternal and unlimited, how could it be one, being a body? For if it were composed of dissimilar parts, it would be many. Melissus himself contends that it would then ${ }^{3}$ be many. But if it is all water or all earth, or whatever this Being is, it would have many parts 2_{5} (as Zeno, too, attempts to prove of that which is one in this sense) ; its parts would then be a manifold, being some of them smaller and less than others; so that in this way it would vary throughout without any body being added

[^143]to it or taken away from it. But if it has no body or width 30 or length, how could the One be unlimited? Or why should there not be many, nay innumerable, existents of this kind ? Further, if there are more existents than one, why should they not be unlimited in size, just as Xenophanes asserts that the depth both of the earth and of the air is unlimited? Empedocles shows that Xenophanes held this view; for, as though certain people urged such views, he makes the criticism that, if this is the nature of earth and air, ${ }^{1}$ it is impossible for them ever to meet,
35 If the depths of the earth are unbounded and ample the ether,
As the words that come forth from the lips of mortals unnumbered,
Empty and meaningless, say; they have seen of the whole but a little. ${ }^{2}$

Further, if Being is one, there is nothing absurd in supposing that it is not similar everywhere. For if the All 976^{6} is water or fire or something of that kind, there is no reason why we should not suppose several kinds of this one Being, each kind individually similar to itself. ${ }^{3}$ For there is no reason why one kind should not be rare and another dense, as long as the rarity does not involve a void. For 5 in the rare there is not a void isolated in particular parts in such a way that of the whole part is dense and part empty ${ }^{4}$ (rarity then meaning that the whole is like this); but rarity is produced when the whole is uniformly full, but uniformly less full than in the dense.

But suppose Being exists and is ungenerated, and suppose it were granted that for this reason it is unlimited, and that more than one thing cannot be unlimited, and it 1o must therefore be said to be one, and it is impossible for it to be dissimilar-how can he say that the whole is without motion, if the void cannot exist? ${ }^{5}$

[^144]Now Melissus declares that Being is without motion, if a void does not exist; for everything moves by changing its place. In the first place, then, this does not agree with the opinion of many, which is that a void does exist, yet I_{5} it is not a body, but is of the nature of the Chaos, as Hesiod describes it first coming into being in the birth of things, considering space to be a prime necessity for things which exist; and the void is, as it were, a vessel in which we expect to find an interior space. ${ }^{1}$ But even if there is no void, why should Being be less likely to move? For Anaxagoras, who devoted his attention to this subject, 20 and for whom it was not enough merely to declare that a void does not exist, declares that things which are, are in motion, although there is no void. Similarly Empedocles says that they are ever in motion continually all through the period of aggregation, but that there is no void; for he says that

Nought of the whole can be void; whence then could 25 any be added? ${ }^{2}$
while when all has been aggregated into a single form, so as to be one,

Emptiness there is none, nor aught that is overflowing. ${ }^{3}$ For why should not things assume one another's position and go through a circle of simultancous movements, one thing taking the place of another, and that the place of something else, and something else the first position ? And what is there in what he has said that precludes a movement taking place in things, consisting in a change of 30 form in an object which remains in the same position (what he, like every one else, terms ' alteration '), as, for example, when white turns into black, or bitter into sweet ? For the non-existence of a void and the inability of that
 introduced, as are the discussions of the other theses, by a hypothetical clause. His suggested reading, adopted here, has the advantage that

${ }^{1}$ Cf. Phys. $212^{\text {a }}$ I4. ${ }^{2}$ Diels, op. cit., 177, 1. ${ }^{3}$ ib. 176, 30.

$645 \cdot 8$

which is full to receive any addition does not at all preclude the possibility of alteration.

Thus neither are all things necessarily eternal nor is Being necessarily unlimited (but many things are unlimited), nor is it one, nor homogeneous, nor unmoved, whether it be one or whether it be many. If this is admitted, there would be nothing in what he has said to prevent existents from being either transposed or altered; if Being is one, the movement is of the whole, which differs in density and rarity, and alters without the addition or abstraction of any body; while, if there is a multiplicity of existents, their movement is due to their mutual mixture and segregation. For it is not likely that the process of mixture is either a placing of elements one above another, ${ }^{1}$ or a 5 putting of them together, such as he supposes, ${ }^{2}$ by which either they are immediately distinct, or else they appear each distinct from one another, if the layers above one another are successively rubbed away; but they are so arranged in their mixture, that any part of that which is mixed comes into such a relation to any part of that with which it is mixed, that even the smallest particles would be found not merely placed together but mixed. ${ }_{10}$ For since there is no smallest body, ${ }^{3}$ every part is mixed with every other part, just as the whole is mixed.

DE XENOPHANE

Xenophanes declares that if anything is, it cannot 3 possibly have come into being, and he argues this with 15 reference to God. For that which has come into being must necessarily have done so either from that which is similar or from that which is dissimilar; and neither alternative is possible. For it is no more possible for like to have been begotten by like than for like to have begotten like (for at any rate when similars are equal, all the same

[^145]qualities inhere in each and in a similar way in their relations to one another), nor could unlike have come into being from unlike. For if the stronger could come into being from the weaker, or the greater from the less, or the 20 better from the worse, or reversely worse things from better, then Not-being could come to be from Being, or Being from Not-being ; which is impossible. Accordingly for these reasons God is eternal.

Now if God is supreme over all, Xenophanes declares that it follows that he must be one. For if there were two or more gods, he would no longer be supreme and the best ${ }_{25}$ of all; for then each of the many gods would likewise be supreme. For what God and God's power means is that he is supreme and never inferior, and that he possesses supremacy over all. So far then as he is not superior, he is not God. Now if there were several gods, supposing they 30 were superior to one another in some respects and inferior in others, they would not be gods; for it is the nature of the divine not to be inferior. But supposing they were equal, they would not possess God's nature, for God must be supreme; whereas that which is equal is neither better nor worse than that to which it is equal. So that if God be, and be of this nature, God is one and one only. For otherwise he could not even do whatsoever he wished ; 35 for if there were more gods than one, he could not do so ; therefore he is One only.

Being one he is similar in every part, seeing and hearing and possessing the other senses in every part of him. For otherwise the parts of God would be superior and inferior to one another ; which is impossible.

Being similar in every part, he is spherical ; for he is $977^{\text {b }}$ not of a certain nature in one part and not in another, but in every part.

Being eternal and one and similar and spherical, he is neither unlimited nor limited. For Not-being is unlimited; for it has neither middle nor beginning and end, nor any other parts, and such is the nature of the unlimited. But 5 Being could not be of the same nature as Not-being. On the other hand, if things were several, mutual limitation
would occur. But the One has no likeness either to Notbeing or to the Many; for that which is one has nothing in which it can find a limit.

A One, then, of the kind which Xenophanes declares God - to be can, he says, be neither moved nor unmoved ; for 10 immobility belongs to Not-being (for nothing else can go into it, nor can it go into anything else) ; while movement belongs to a plurality, for one body must move into another's place. Now nothing can ever move into Notbeing; for Not-being is nowhere. On the other hand, if it moved in the way of things changing into one another, 15 then the One would be more than one. For these reasons motion belongs to a pair of things, or any number more than one, while rest and immobility belong to that which is nothing. But the One is neither still nor is it moved; for it is similar neither to Not-being nor to the Many ; but being in every respect of this nature-eternal and one and similar and spherical-God is neither unlimited nor limited, 20 neither at rest nor in motion.

In the first place, then, Xenophanes also, like Melissus, 4 assumes that what comes into being does so from that which already is. Yet why should not that which comes into being do so not from something either similar or dissimilar, but from Not-being? Further, God is no more ungenerated than anything else, even if we suppose 25 that all things have come into being from something similar or dissimilar, which is impossible; so that either there is nothing except God or everything else is also eternal. Further, he assumes that God is supreme, meaning by this that he is most powerful and best. This does not seem to agree with the customary opinion, which holds that some gods are in many respects superior to others. It was not, therefore, from accepted opinion that he took this so hypothesis about God, which he treats as though it were admitted. It is said that he understands the supremacy of God in the sense that his nature is superior, not in relation to anything else, but in his own disposition; since surely in relation to something else there would be nothing to
prevent his excelling, not by his own goodness and strength, but owing to the weakness of all others. But no one would 35 wish to say that God is supreme in this latter sense, but rather that he is in himself as excellent as possible, and there is nothing lacking in him of what is good and noble; if this is so, his supremacy would perhaps follow. But even if there are more gods than one, nothing would prevent their being of this nature, all possessing the greatest possible $978^{\text {a }}$ excellence and being superior to all else, but not to one another. Now there are, it scems, other things besides God; for he says that God is supreme, and he must necessarily be supreme over something.

But ${ }^{1}$ supposing that he is one, it does not follow that he sces and hears in every part ; for if he does not sce in one part, he does not see worse in that part, but does not see 5 at all. But perhaps perceiving in every part means that he would possess the highest excellence if he were similar in every part.

Further, if this were his nature, why should he be spherical, and why should he have that shape rather than any other, just because he hears in every part and is supreme in every part? For just as when we say of white lead ıo that it is white in all its parts, we merely mean that the colour whiteness is present in every portion of it, why should we not say similarly of God that sight and hearing and supremacy are present in every part, in the sense that whatsoever portion of him one takes will be found to be possessed of these characteristics? But God is not neces- I_{5} sarily spherical for this reason any more than white lead is.

Further, how is it possible that, being a body and having magnitude, God can be neither unlimited nor limited? For that is unlimited which, being capable of limitation, has no limit, and limit occurs in magnitude and multitude and any kind of quantity ; and therefore any magnitude which has no limit is unlimited. Again, if God is spherical, 20 he must have a limit; for he has extremities, if he has a centre within himself from which they are at the greatest

[^146]distance. But anything which is spherical has a centre; for that is spherical in which the extremities are equidistant from the centre. Now it is the same thing to say that a body has extremities, and that it has limits . . ${ }^{1}$ For if ${ }_{25}$ Not-being is unlimited, why should not Being also be unlimited? For why should not some identical attributes be assigned to Being and to Not-being? For no one can perceive at this moment what does not exist, while something may exist at this moment without any one's perceiving it; ${ }^{2}$ yet both can be the subject of speech and thought . . . ${ }^{3}$ And the non-existent is not white; 30 either, then, for this reason existents are all white (this is in order that we may not assign an identical quality to that which exists and to the non-existent), or else, I think, there is nothing to prevent anything which exists from being not white. And so Being would still more easily admit a negative predicate, namely, the unlimited, if, as was said just now, ${ }^{4}$ a thing is unlimited owing to its not having a limit; ${ }^{5}$ and so Being too is either unlimited or 35 has a limit. But perhaps to attribute unlimitedness to Notbeing is also absurd; for we do not call everything which has not a limit unlimited, just as we should not say that what is not equal is unequal. Again, why should not God, although he be one, yet be limited, though not by anything which is God. But if God is a sole one, then his parts also must be a sole one. ${ }^{6}$ Further, it is also absurd that if in fact the Many are limited in relation to one another, for this reason the One should not have a limit. For many of the same predicates belong to the Many and to the One ; Being, for instance, is common to them both. 5 It would therefore, perhaps, be absurd if we were to declare

[^147]that God does not exist for the reason that the Many exist, so that he may not be like ${ }^{1}$ them in this respect. Again, though God be One, why should he not be limited and have limits? even as Parmenides says that, being One, he is
Like to the mass of a sphere on all sides carefully rounded Everywhere equally far from the midst. ${ }^{2}$
For the limit must be a limit of something, but not neces- 10 sarily in relation to something else: that which has a limit does not necessarily have it in relation to something else (as when it is limited in relation to the unlimited which comes next to it), ${ }^{3}$ but being limited means the possession of extremities, and when a thing has extremities it need not necessarily have them in relation to something else. Some things, therefore, may happen both to be limited and to adjoin something else, while others may be limited, but not in relation to something else.

Again, as regards Being and Not-being being un- 1_{5} moved, we must say that to suppose that Not-being is unmoved because Being is moved, is perhaps just as absurd as the cases of opposition given above. ${ }^{4}$ And further, surely one cannot suppose that 'not-moving' and 'unmoved' are the same thing, but the former is the negation of moving (like ' not-equal', which can be correctly used even of the non-existent), while ' unmoved' is used of an actual state (as 'unequal' is used), and 20 to express the contrary of ' moving' (that is, 'being at rest '), just as words with the negative prefix ${ }^{5}$ are generally used to express contraries. It is therefore quite right to use the term 'not-moving' of the nonexistent, but 'being at rest' cannot belong to the nonexistent; similarly 'unmoved', which means the same 25 thing, ${ }^{6}$ cannot belong to it. Yet Xenophanes uses ' not moving' in the sense of 'being at rest', and says that Not-being is at rest because it undergoes no change of

[^148]position. As we said above, it is perhaps absurd, if we attach some predicate to Not-being, to assert that it does not apply to Being, especially if the predicate used 30 is a negation, such as 'not moving' and ' not changing its position'. For, as has been said, it would preclude a number of predicates from being used of existing things : for it would not be true to say that 'many' is ' not one ', since the non-existent also is ' not one'. Furthermore, in some cases the contrary predicates seem to follow from the mere ${ }^{1}$ negations ; for example, a thing must be either 35 equal or unequal if it is a multitude or magnitude, and odd or even, if it is a number; similarly, perhaps, Being, if it be a body, must be either at rest or in motion. Further, if God and the One do not move, just because the Many move by passing into one another, why should not God also move into something else? For he nowhere states that God is one and sole, but what he says is that there is only one God. But even supposing God were one and sole, why should not the parts of God move into one another and God himself thus revolve? For he will 5 not, like Zeno, declare that such a One is many. For he himself asserts that God is a body, whether he calls it the All or by some other name ; for if he were incorporeal, how could he be spherical? Again, it would only be possible for him neither to move nor to be at rest if he were nowhere ; ${ }^{2}$ but since he is a body, what would prevent this body from moving, in the way mentioned ?

DE GORGIA

Gorgias declares that nothing exists; and if anything 5 exists it is unknowable; and if it exists and is knowable, yet it cannot be indicated to others. To prove that nothing exists he collects the statements of others, who in ${ }^{5}$ speaking about Being seem to assert contrary opinions (some trying to prove that existence is one and not many,

[^149]others that it is many and not one, and some that existents are ungenerated, others that they have come to be), and draws a two-edged conclusion. For he argues that if anything exists, it must be either one or many, and cither be ungenerated or have come to be. If therefore, it cannot be either one or many, ungenerated or having come to be, it would be nothing at all. For if anything 20 were, it would be one of these alternatives. That Being, then, is neither one nor many, neither ungenerated nor having come to be, he attempts to prove by following partly Melissus and partly Zeno, after first stating his own special proof that it is not possible either to be or not to be. For, he says, if Not-to-Be is Not-to-Be, then ${ }^{25}$ Not-being would be no less than Being. For Not-being is Not-being and Being is Being, so that things no more are than are not. But if Not-to-Be is, then, he argues, To-Be, its opposite, is not; for if Not-to-Be is, it follows that To -Be is not. So that on this showing, he says, nothing could be, unless $\mathrm{T}_{0}-\mathrm{Be}$ and Not-to-Be are the same thing. 3_{0} And if they are the same thing, even so nothing would be ; for Not-being is not, nor yet Being, since it is the same as Not-being. Such, then, is his first argument.

6 Now it does not at all follow from what he has said that nothing is. For the proof which he and others attempt is thus refuted: If Not-being is, it either ' is ' simply, 35 or else it is in a similar sense because it is non-existent. But this is not self-evident, nor a necessary deduction; but if there are, as it were, two things of which one is and the other is not, you can truly say of the former that it ' is', but not of the latter, because that which is, is existent, but that which is not is non-existent. ${ }^{1}$ Why, then, is it $979^{\text {b }}$

[^150]not possible either to be or not to be? And why should not both or either be possible? For, he says, Not-to-Be, if Not-to-Be were, as he thinks, something, would be just as much as $\mathrm{To}-\mathrm{Be}$, while at the same time he denies that Not-to-Be has any kind of existence. ${ }^{1}$ But even if Notbeing is Not-being, yet it does not follow that Not-being 5 ' is ' in a similar way to Being ; for the former is Not-being, while the latter actually is as well. ${ }^{2}$ But even if he could say of Not-being that it is simply (yet how strange it would be to say that 'Not-being is!'), still granted that it were so, does it any more follow that everything is not rather than is? For the exact opposite seems then to become ro the consequent ; since, if Not-being is Being and Being is Being, all things are; for both the things which are, and the things which are not, are. For it does not necessarily follow that if Not-being is, Being is not. Even if one were to concede the point and allow that Not-being is and Being is not, nevertheless, something would be; for the things which are not would be, according to his argument. But ${ }^{15}$ if To-Be and Not-to-Be are the same thing, even so it would not follow that nothing is, rather than that something is. For just as he argues that if Not-being and Being are the same thing, Being and Not-being alike are not, therefore nothing is; so, reversing the position, it is equally possible to argue that everything is; for Not-being is and Being is, therefore everything is.
20 After this argument Gorgias declares that if anything is, it must either be ungenerated or else have come to be. If it is ungenerated, he adopts the tenet of Melissus that it is unlimited, and declares that the unlimited cannot exist anywhere. It cannot, he argues, exist in itself, or
 " " "өт兀v" ($\dot{\pi} \pi \lambda \hat{\omega} s$), but of the latter "ouk " $\sigma \tau \iota$ ", because the former (if you

 thing, but not from " $\epsilon \sigma \tau \grave{\imath} \mu \grave{\eta}$ oै ν " to " " $\epsilon \tau \tau \downarrow$ " ($\dot{\pi} \pi \lambda \bar{\omega} s)$, which means the
 ойтє μ 衣 єỉvat ?
${ }^{1}$ Reading with Cook Wilson oủ oév for oùdeis.
${ }^{2}$ i. e. Being not only is Being (' is' in the copulative sense), but it further (ϵ ' $\tau \iota$) 'is', that is, has real existence ('is' in the existential sense).
in anything else (for, on the latter supposition, there would be two unlimiteds, that which is in something else and the something else in which it is) ; and, being nowhere, it is 25 nothing, according to the argument of Zeno about space. Being is not, therefore, ungenerated. Nor, again, has it come to be; for, surely, he argues, nothing could come to be out of either Being or Not-being. For if Being were to change, it would no longer be Being, ${ }^{1}$ just as also, if Not-being were to come to be, it would no longer be Notbeing. Nor, again, could it come to be, save from Being; 30 for if Not-being is not, nothing could come to be out of nothing ; while on the other hand, if Not-being is, ${ }^{2}$ it could not come to be out of Not-being for the same reasons for which it could not come to be out of Being. So if anything that is, necessarily either is ungenerated or else has come to be, and these are impossibilities, it is impossible for anything to be.

Further, if anything is, either one or more things must be ; 35 if neither one nor more, nothing is . . . ${ }^{3}$

Nor, he says, can anything move. For if it were to move $980^{\text {a }}$ it would no longer be in the same condition, but Being would be Not-being, and Not-being would have come to be. And further, if it moves and is transferred to a different position, Being, being no longer continuous, is divided, and, where it is divided, it no longer exists ; and so, if it moves in all its parts, it is divided in all its parts, and if 5^{5}
${ }^{1}$ Keeping the MS. reading tò ${ }^{\circ} \nu \nu$.

${ }^{3} .979^{b} 36-980^{\text {a }}$ I. These lines are hopelessly corrupt in the MSS., which show various lacunae. Diels prints the text of Cod. Lips. with the lacunae there shown. Apelt restores as follows: кaì $\epsilon^{\in} \nu \mu \hat{\epsilon} \nu$ oủk ảv

 as shown in the Cod. Lips.: the only objection is the word dyatpeiotat, of which there is no indication in the Cod. Lips. and which is too long for the space; a more natural word would be $\lambda a \mu \beta i v \epsilon \epsilon$, cf. $979^{\text {b }} 22$. Apelt's text, with this alteration, may be translated: 'One cannot be, because the true One would be incorporeal, as having no magnitude. (This he adopts from the tenets of Zeno.) And if one is not, nothing can be at all; for if one is not, many cannot be either ; and if neither one nor many are, nothing is.'
this is so, it ceases to exist in all its parts. For where it is divided, he argues, there it lacks Being; he uses 'divided ' to mean a void, as is written in the so-called 'Arguments of Leucippus '.

These are the proofs which he employs to show that nothing exists ; he next goes on to prove that if anything exists it is unknowable. ${ }^{1}$ For otherwise, he argues, all objects of cognition must exist, and Not-being, if it really 10 does not exist, could not be cognized either. But were this so, nothing could be false, not even (he says) though one should say that chariots are racing on the sea. For all things would be just the same. ${ }^{2}$ For the objects of sight and hearing are ${ }^{3}$ for the reason ${ }^{4}$ that they are in each case cognized. But if this is not the reason-if just as what we see is not ${ }^{1}$ the more because we see it, so also what we think is not the more for that ${ }^{5}$ (and, were it otherwise, just as in the one case our objects of vision would often be just the same, ${ }^{6}$ so in the other our objects of thought would often be just the same ${ }^{6}$) . . ; but of which kind the true things are is uncertain. So that even if things are, they would be unknowable by us.

But even if they are knowable by us, how, he asks, could any one indicate them to another ? For how, he 20 says, could any one communicate by word of mouth that which he has scen ? And how could that which has been seen be indicated to a listener if he has not seen it ?
980° For just as the sight does not recognize sounds, so the hear-

[^151]ing does not hear colours but sounds; and he who speaks, speaks, but does not speak a colour or a thing. When, therefore, one has not a thing in the mind, how will he get it there from another person by word or any other token of the thing except by seeing it, if it is a colour, or hearing it, 5 if it is a noise? For he who speaks does not speak a noise at all, or a colour, but a word; and so it is not possible to conceive a colour, but only to see it, nor a noise, but only to hear it. But even if it is possible to know things, and to express whatever one knows in words, yet how can the hearer have in his mind the same thing as the speaker? For the same thing cannot be present simultaneously in several separate people; for in that case the one would to be two. But if, he argues, the same thing could be present in several persons, there is no reason why it should not appear dissimilar to them, if they are not themselves entirely similar and are not in the same place; for if they were ${ }^{1}$ in the same place they would be one and not two. But it appears that the objects which even one and the same man perceives at the same moment are not all similar, but he perceives different things by hearing and by sight, 1_{5} and differently now and on some former occasion ; and so a man can scarcely perceive the same thing as someone else.

Thus nothing exists; and if anything could exist, nothing is knowable; and even if anything were knowable, no one could indicate it to another, firstly because things are not words, and secondly because no one can have in his mind the same thing as somcone elsc. This and all his other arguments are concerned with difficulties raised by earlier 20 philosophers, so that in examining their views these questions have to be discussed. ${ }^{2}$

[^152]
INDEX

$A u d .=\mathrm{de}$ Audibilibus.
Col. $=$ de Coloribus.
Lin. $=$ de Lineis Insecabilibus.
Mech. $=$ Mechanica.
Mir. $=$ de Mirabilibus Auscultationibus.
$M X G .=$ de Melisso Xenophane Gorgia.
$P h .=$ Physiognomonica.
$P l=$ de Plantis.
Vent. $=$ Ventorum situs et cognomina.

$$
91^{a}-99^{b}=791^{a}-799^{b} . \quad 0^{a}-58^{b}=800^{a}-85^{b} . \quad 68^{a}-80^{b}=968^{a}-980^{b} .
$$

Abdomen, Ph. $10^{\text {a }} 5,10^{\text {b }} 17-23$. Abusiveness, see Railing.
Abydos, Mir. $32^{\text {b }}$ I7.
Accidens, per, Lin. $72^{\text {a }}$ 18, 24.
Accidental predicates, Mech. $56^{\text {a }}$ 35.

Achaea, Achaeans, Mir. $30^{\text {b }} \mathbf{2 3}$, $40^{\text {b }} 2$, 11 .
Achilles, temple of, Mir. $40^{\text {a }} 10$.
Acorn, Pl. $20^{\mathrm{b}} 10$.
Acquired characters)(natural, $P h$. $6^{a} 24$.
Acropolis, Mir. $46^{\text {a }} 18$.
Acute angle, between thigh and leg in rising from sitting position, Mech. $57^{\mathrm{b}} 22,58^{\mathrm{a}} 2$; in a rhombus, $55^{\text {a }} 5,13,15$.
Adder, see Viper.
Adriatic, Mir. $36^{\mathrm{a}} 7,25,39^{\mathrm{b}} 3,8$, II, 18.
Aeacidae, Mir. $40^{2} 7$.
Aegae, Vent. $73^{\mathrm{b}} 2$.
Aeneas, Mir. $3^{68} 17$.
Aenianians, Mir. $43^{\text {b }} 17$.
Aeolian islands, Mir. $38^{\mathrm{b}} 30,43^{\mathrm{b}} 6$.
Aethaleia (Elba), Mir. $37^{\text {b }} 26,39^{\text {b }}$ 20.

Aetolians, Mir. $47^{\text {b }} 3$.
Affectionate disposition, $P h .9^{\text {b }} 35$.
Agamemnonidae, Mir. $40^{\text {a }} 8$.
Agathocles, Mir. $40^{\text {b }} 23$.
Air, Col. colour of, normally white, $91^{\text {a }} 2$; when dense, black, $91^{\text {a }}$ 25 ; when rare, colourless or blue, $94^{\text {a }} 8-12$; at sunrise and sunset, purple, $92^{2} 18$; in blends, $92^{\text {b }} 23$; a translucent medium, $94^{\text {a }}$ 1; Aud. $\mathrm{o}^{\mathrm{a}} \mathrm{I}-\mathrm{o}^{\mathrm{a}} 20$; see also Impact ; Pl. concoction in, $25^{2} 29$; draws
up water, $24^{\text {b }} 17$; the element of, $23^{\mathrm{b}} 5,24^{\mathrm{b}} 22$; naturally rises above water, $23^{\text {b }} 3,24^{\text {b }} 23$; Mir. sucked into the earth, $32^{\text {b }}$ 31 ; Mech. progression through, quicker than through water, $51^{\text {a }}$ 17; $M X G$. constitutes the All, $75^{\text {b }}$ 24 ; Democritus's view of, $75^{\text {b }}$ 28 ; an eternal element, $75^{\text {b }} 5$; unlimited, $76^{6} 32,36$.
Albinism, Col. $98^{\text {a }} 24^{-\mathrm{b}} 9$; Mir. $31^{\text {b }}$ 14.

Alcinous, of Sybaris, Mir. $38^{\text {a }}$ I5, 25.

Aletafur, Pl. $29^{2} 20$ (see note).
All, the, applied to God, $M X G$. $79^{\mathrm{a}} 6$; may be limited, $76^{\mathrm{a}} 7$; may have one form, $75^{\mathrm{b}} 22,25$, 76^{b}.
Alluvial mining, Mir. $33^{\text {b }} 13-14$, 21-31.
Almond, almond-tree, $P l .20^{\mathrm{b}} \mathrm{I}, 21^{\text {ab }}$ $34,39^{\text {b }} 19$; bitter a., $21^{\text {a }} 5$; a. gum, $18^{\mathrm{a}} 5$; Mir. $3^{2 \mathrm{a}} \mathrm{I}$.
Altar, of Artemis, Mir. $47^{\text {b }}$ I ; of Jason, $39^{\text {b }} 16$.
Alteration, in Being, $M X G$. 76^{b} 29-34, 38.
Alum, Mir. $42^{\text {b }} 22$.
Amber, Islands, Mir. $36^{\text {a }} 34$; from black poplars, $36^{\text {b }} 4$.
Ambition, Ph. $9^{\mathrm{b}} 35$.
Amblyopia, cure for, Mir. $47^{\text {a }} 2$.
Amisus, in Pontus, Mir. $33^{\text {b }} 23$.
Amneus (SSE. wind), Vent. $73^{\mathrm{b}} 7$.
Amphipolis, Mir. $41^{\text {b }} 15$.
Amphitryon, Mir. $34^{\text {b }} 26$.
Amulet, Mir. 46 ${ }^{\text {b }} 7-9$.
Anaxagoras, $P l .1_{5}{ }^{\text {a }} 15,{ }^{\mathrm{b}} 16,16^{\mathrm{b}} 26$,

INDEX

I7 $7^{\text {a }} 26 ; M X G \cdot 75^{\text {b }} 17,76^{\text {a }} 14$, $\mathrm{b}_{2} \mathrm{O}$.
Anaximander, $M X G \cdot 75^{\mathrm{b}} 22$.
Anaximenes, $M X G .75^{\mathrm{b}} 23,24$.
Anger, bodily expression of, $P h$. $5^{\text {a }} 30,12^{2} 30,35$; vocal expression of, Aud. $4^{\mathrm{b}} 38 ; P h \cdot 7^{\mathrm{a}}{ }^{1} 5$; see also Irascibility, Temper.
Angles, Mech. of circles, $5 \mathrm{I}^{\mathrm{b}} 24$, $38,55^{a} 36$; exterior a. of a parallelogram equal interior opposite a., $56^{\mathrm{b}} 24$; formed by limbs in rising from a sitting position, $57^{\mathrm{b}} 2 \mathrm{Iff}$; in a triangle, $51^{\text {a }} 14 ;$ Lin. of a square, $70^{a} 12$; see also Acute angle, Obtuse angle, Right angle.
Animals, Col. colours of, $97^{\text {a }} 33-99^{\text {b }}$ 19; $P h$. physiognomy of lower a., $5^{2} 10-18,9^{2} 26-10^{2} 13$; physiognomic inferences from lower a., $5^{\mathrm{a}} 20-28,5^{\mathrm{b}} 10-6^{\mathrm{a}} 6,6^{\mathrm{b}} 6-14$, $7^{\text {a }} 17-30,8^{b} 30-9^{a} 1,9^{a} 5,10^{a} 15^{-}$ I $3^{\mathrm{b}} 5 ; P l$. absence of female sex in some a., $16^{a} 18$; are plants a. ? $15^{a} 19,16^{a} 2$; bred in snow, $25^{a} 3$; compared with plants, 18^{a} $17-21, \quad{ }^{\mathrm{b}} 2, \quad 19^{\mathrm{a}} 18, \quad 19, \quad 21^{2} 10$; 'concoction' in, $22^{a} 26,29,{ }^{\text {b }} 7,28^{\text {a }}$ 10, 20 ; created after plants, $17^{\text {b }}$ 35 ff ; embryo of, $17^{a} 31$; food of, 16^{b} I2 ff. ; hibernation, $18^{\mathrm{b}} 25$; lack of intelligence in some a., $16^{a} 6,10 ;$ muscles of, $18^{a} 20$; not found in Dead Sea, $24^{\text {a }} 26$; nutritive material of, $28^{\circ} 20$; produced from decaying vegetation, $16^{a} 22$; respiration, absence of, in some a., $16^{b} 27$; sensation in, $16^{a} 12$; sex in, $16^{a} 18,17^{b} 2$; shape of, $28^{a} 24$; sleep and its causes in, $16^{\text {b }} 33 \mathrm{ff}$. ; skin of, $18^{\text {a }}$ I 9 ; superior to plants, $17^{b} 32$.
Animate)(inanimate, $P l \cdot 16^{a} 9,37$, $\mathrm{b}_{3} \mathrm{ff}$.
Ankles, $P h .7^{\mathrm{b}} 23,10^{\mathrm{a}} 24-27$.
Annuals, $P l$. $18^{\text {b }} 10,19^{b} 13$.
Antidote, to arrow-poison, Mir. $30^{\text {b }}$ $20,37^{\text {a }} 19-23$; to leopard's bane, $3 \mathrm{I}^{\mathrm{a}} 5$; to scorpion's sting, $44^{\text {b }}$ 31 ; to snake-bite, $3 I^{\mathrm{a}} 28,44^{\text {b }} 30$.
Antiphon, quoted, Meih. $47^{\text {a }} 20$.
Antiphrasis, example of, Mir. $46^{\text {b }}$ 27.

Antlers, Pl. I $8^{\mathrm{b}} 24$; Mir. $30^{\mathrm{b}} 24^{-}$ $31^{\text {a }} 3,35^{b} 28$.
Anvil, Aud. $2^{\text {b }} 42$.

Ape, $P h$. $^{10}{ }^{b} 3$, II $^{\mathrm{a}} 26$, II ${ }^{\mathrm{b}} 9,20,23$, $12^{a} 9$.
Apeliotes (E. wind), Mir. $44^{\text {a }} 25$; Vent. 73^{a} 13, ${ }^{\mathrm{b}} 6$.
Aphrodite, Mir. $38^{\text {a }} 24$.
Apollo, Mir. $38^{a} 24$; temple in Croton, $40^{2} 2 \mathrm{I}$, in Sicyon, $34^{\text {b }}$ 24 , in Thebes, $34^{\text {b }} 21$.
Apollonia, Mir. $33^{\mathrm{a}} 7,42^{\mathrm{b}}$ I4; Vent. $73^{a} 24$
'Apotome ', Lin. 68' 19.
Apple, apple-tree, Col. $96^{\text {b }} 13$; Pl. I9 ${ }^{\text {b }} 22,20^{\mathrm{b}} 37$.
Aquatic animals, Col. $94^{2} 24,99^{\text {b }}$ I7.
Arabia, Mir. $30^{\text {b }} 5,45^{\text {a }} 24$.
Arbutus, Col. $97^{2} 27$.
Arc, of a circle, Mech. $49^{\text {b }}$ I, 7, 16, $55^{\text {b }}$ I 3,17 .
Arcadia, Mir. $3 \mathrm{I}^{\mathrm{b}}$ I $4,42^{\mathrm{b}} 6$.
Architecture, ancient Greek style of, in Sardinia, Mir. $38^{\text {b }}$ I 3.
Ardiaei, Mir. $44^{\text {b }} 9$.
Arethusa, fountain of, Mir. $47^{\text {a }} 3$.
Argestes (NW. wind), Vent. $73^{\text {b }}$ 17.

Argonauts, voyage of the, Mir. $39^{\text {b }}$ 14-40 5 .
Argos, Mir. 36^{b} II, $44^{\mathrm{b}} 23,46^{\mathrm{a}} 22$.
Aristaeus, Mir. $38^{\text {b }} 23$.
Arm, Ph. $8^{\mathrm{a}} 3 \mathrm{I}, 13^{\text {a }} 10$.
Armenia, Mir. $31^{\text {a }} 4$.
Arno (River), Mir. $37^{\text {b }} 24$ (note).
Aromatic trees, Pl. $20^{\mathrm{b}} 26-29$.
Arrows, Mir. $30^{\mathrm{b}} 22$; of Heracles, $40^{a} 19$; poisoned, $37^{a} 12-23$, with viper's venom, $45^{\text {a }}$ 1-9.
Art)(nature, Mech. $47^{\text {a }}$ II-13, 21.
Artemis, temples of, Mir. $39^{\text {b }}$ I 8 , 40^{b} I9, 21, $47^{\mathrm{b}} \mathrm{I}$; 'Orthosian', $47^{b} 1$.
Articulation, vocal, Aud. I ${ }^{\text {b }} 3$, I4, $4^{b} 3$.
Asbamaeon, Mir. $45^{\text {b }} 34$.
Asconian lake, Mir. $34^{\text {a }} 31$, 34 .
Ashes, colour of, Col. $91^{\text {a }} 5$; Phrygian, as a remedy for eyes, Mir. $34^{\mathrm{b}} 30$.
Asp, Mir. 45^{2} II.
Aspirated sounds)(smooth, Aud. $4^{\text {b }} 8-11$.
Ass, Ph. $8^{\mathrm{b}} 35,37$, II $^{\mathrm{a}} 26$, II $^{\mathrm{b}} 7-3 \mathrm{I}$, $12^{\text {a }} 8,10,13^{a} 32$; Mir. $31^{\text {a }} 22$.
Assiduity, $P h$. I I ${ }^{\text {b }} 6$.
Astringent solutions, in dyeing, Col. $94^{8} 30$.
Athene, Mir. $3^{8^{a}} 24,40^{a} 31,46^{a}$

18; 'Achaean', $40^{\text {b }} 2$; 'Heilenia', $40^{\text {a }} 28,34$; statue of, by Phidias, $46^{a}{ }^{17}-21$.
Athens, Mir. $34^{\mathrm{a}} 12-16,43^{\mathrm{b}} 1,18$, 46 ${ }^{2}$ 6-8, 17-21.
Atitania, Mir. $33^{\text {a }} 7$.
Atridae, Mir. $40^{2} 7$.
Augeas, Mir. $34^{\text {b }} 27$.
Aulus, the Peucestian, Mir. $36^{\text {a }} 5$.
Autariates, Mir. $44^{\text {b }}$ Io.
Avernus, Mir. $39^{\text {a }} 13$.
Axe, Mir. $40^{\text {b }} 2$; Mech. $53^{\text {b }}$ 14-24.
Axle, Mech. $52^{\text {a }} 33$.
Babylon, Mir. $35^{\text {b }} 7$.
Back, Ph. $7^{\mathrm{b}}{ }_{17}, 1 \mathrm{I}^{\mathrm{b}} 28,10^{\mathrm{a}} 4,{ }^{\mathrm{b}} 9-12$, $25-34,12^{\mathrm{b}} 21$.
Bactrians, Mir. $33^{\text {b }} 14$.
Baking, of horns, Aud. $2^{\text {b }} 1-5,3^{\text {a }}$ 30, 33 .
Balance, Mech. $48^{\text {a }} 3,50^{\text {a }} 34$; contrivances for cheating in the b., $49^{\text {b }} 35-39$; equilibrium in the b., $54^{\mathrm{a}} \mathrm{I} 4$; the steelyard is a half b., $53^{\text {b }} 26,54^{\text {a }} 3-8$; why does a b. move more easily without a weight in it? $52^{\text {a }} 23-28$; why does the beam of $a \mathrm{~b}$. not rise when the weight is removed, if the cord is attached to its lower surface? $50^{2} 5,21-29$; why does the beam of a b. rise, when the weight is removed, if the cord is attached to its upper surface? $50^{2} 2-20$; why are large balances more accurate than small? 48^{b} I ff., $49^{\mathrm{b}} 25$ ff., $25^{\mathrm{a}}{ }^{19}$.
Balearic islands, Mir. $37^{\text {a }} 30$ (note).
Balsam, Pl. $20^{\mathrm{b}} 28$.
Bapyrus, Vent. $73^{\text {a }} 15$.
'Barbarians', Mir. $36^{\text {a }} 12,40^{\text {a }} 25$; barbarian language, $46^{2} 32$.
Bark, Col. as a dye, $94^{\text {a }} 18 ;$ Pl. $18^{\text {a }}$ $7-9,16,19,31, b_{12}, 19^{a} 32,20^{a}$ $17-19,21^{\mathrm{a}}$ II $, 14,27^{\mathrm{b}} 26,28,29^{\mathrm{a}} 1$; aromatic, $20^{\text {b }} 27$; Mir. of oak, an antidote to arrow-poison, $37^{\mathrm{a}} 19$.
Barking dogs, how silenced, Mir. $46^{\mathrm{b}} 23$.
Barley, Thracian, edible by man only, Mir. $4 \mathrm{I}^{\mathrm{b}} 4^{-8}$.
Barren trees, fertilization of, $P l$. $21^{2} 12$.
Barrenness, of the great vulture, Mir. $35^{\text {a }} 4$; of mules, not universal, $35^{\mathrm{b}} \mathrm{I}$.
Bars, of a capstan, longer more
easily moved than shorter, Mech. $52^{\text {b }}$ 11-21 ; of a swipe, $57^{\text {a }} 35$.
Base-breeding, Ph. II $^{8} 23$.
Bashfulness, Pho $12^{8} 31$.
Basil, Pl. $21^{\text {a }} 30$.
Bath, vapour in, $P l .22^{\text {b }}$ 19-22, $24^{\text {b }}$ 25-34.
Bay-tree, Pl. $20^{\mathrm{b}} 40$.
Beak, Col. $97^{\mathrm{b}} 20 ; \cdot P h .11^{\mathrm{a}} 34^{-\mathrm{b}} \mathrm{I}$.
Beam, of a balance, Mech. $50^{\mathrm{a}} 2 \mathrm{ff}$. $34,52^{\text {a }} 21$; of a steelyard, $53^{\text {b }}$ 29 ff .
Bean, Mir. $46^{\text {b }} 22$.
Bear, hibernates, Mir. $35^{3} 30$; none in Crete, $36^{\mathrm{b}} 27$; habits of white Mysian b., 45 ${ }^{\text {a }}$ 17-23; b.'s grease, $35^{\text {a }} 20$.
Beard, Col. $97^{\mathrm{b}} 30$; Ph. $8^{\mathrm{a}} 23$.
Bed, Mir. strewn with saffron, $40^{\text {b }}$ 30; Mech. dimensions of, 56a 39${ }^{5} 5$; ropes of, why not stretched diagonally, $56^{\mathrm{b}} 2,5 \mathrm{ff}$.
Bee-bread, Mir. $31^{\mathrm{b}} 20$.
Bees, habits of, Mir. $32^{\text {a }} 3,35^{\text {a }} 22$.
Beet, Pl. $19^{\text {b }} 18$.
Beetles, Mir. $42^{\text {a }} 8$; killed by odour of roses, $45^{\mathrm{b}} 2$.
Being, $M X G$. alteration in B. possible, $76^{\text {b }} 29-34$; assumption that things come into b . from what already is, $77^{b} 21,22$, questioned, $77^{\mathrm{b}} 22 \mathrm{ff}$. ; assumption that B. is necessarily inherent in things, $75^{2} 36$; common to the Many and the One, $78^{\text {b }} 4$; contrary o inions about, $79^{2} 13-18$; destroyed if it undergoes change, $74^{\text {a }} 22$; cannot be destroyed, $75^{\text {a }}$ 38 ; is eternal, $74^{\mathrm{a}} 2,{ }^{\mathrm{b}} 7,76^{\mathrm{a}} 21$, denied, $76^{\text {b }} 35$; is unlimited, $74^{\text {a }}$ 9-11, b8, 22, $75^{\mathrm{b}} 37,76^{\mathrm{a}} 4,22$, ${ }^{\mathrm{b}} 9,79^{\mathrm{b}} 22$, questioned, $75^{\mathrm{b}} 34 \mathrm{ff}$., denied, $76^{\mathrm{b}} 35$; is one, $74^{\mathrm{b}} 7$, 23, $76^{\mathrm{a}} 19,38$, questioned, 76^{3} 21 ff ., denied, $76^{\mathrm{b}} 35$; if B. is one, its motion is of the whole, $77^{2} \mathrm{I}$; is neither one nor many, ungenerated or having come into being, $79^{\text {a }} 22$; unity of B. no more proved than multiplicity, $74^{\mathrm{b}} 24$; is similar (=homogeneous), $74^{\mathrm{a}} 13,{ }^{\mathrm{b}} 8,76^{\mathrm{a}} 13 \mathrm{ff}$., questioned, $76^{\mathrm{a}} 39$, denied, $76^{\mathrm{b}} 36$; if dissimilar, B. is many, $74^{\text {a }}{ }^{13}, 76^{\text {a }}$ 22,23 ; is without motion, $74^{\text {a }}$ $15,80^{\text {a }} 1$, questioned, $76^{\text {b }} 12$ ff., denied, $76^{\mathrm{b}} 36$; is ungenerated,
$74^{\text {b }} 23,75^{\text {a }} 23,35,76^{\mathrm{a}} 8,79^{\text {a }} 17 \mathrm{ff}$, ${ }^{\mathrm{b}} 2 \mathrm{I} \mathrm{ff}$. ; if anything is, it cannot have come into b., $77^{\mathrm{a}} 14$; not the result of a process of coming to be, $75^{\text {b }} 9$; one B. may have several kinds, $76^{\prime \prime} 2$; the One may change from B. to B., 75^{1} 31 ; things may pass into other modes of B., $75^{\text {b }} 21$; B. and notbeing, Gorgias's view of, $79^{\mathrm{a}} 21 \mathrm{ff}$., cannot have the same nature, $77^{\mathrm{b}} 6$, may have the same attributes, $7^{8^{a}} 26-27, b_{27-30}$; B. arising out of not-being, $75^{\text {a }} 7$, 17, not produced from not-being and vice versa, $77^{\mathrm{a}} 22$; if B. is moved, not-being is not necessarily moved, $78^{11} 15,16$.
Bellows, Aud. ${ }^{\mathrm{b}}$ I.
Belly, Ph. $6^{\text {b }} 18,21,7^{\mathrm{a}} 33,8^{\mathrm{b}} 2,9$, $10^{b} 7-9,12^{b} 14,16,14^{b} 6$.
Bennut-tree, Pl. $29^{\mathrm{b}} 33$.
Berecynthius (Mt.), Mir. $47^{\text {a }} 5$.
Berecyntias (E. wind), Vent. $73^{\text {a }}$ 24.

Birds, Col. colours of, see Beak, Combs, Plumage, Wattles; Aud. cries of, $o^{a} 26, o^{b} 23,4^{2} 23$; imitate sounds, $\mathrm{o}^{\text {a }} 30 ; P h$. physiognomic inferences from, $P h .6^{\text {b }}$ II, $20,10^{2} 21,23,31,11^{\text {a }} 34,12^{2} 8$, $12^{\text {b }} 16,21$; Mir. $32^{\text {b }} 5,36^{\text {a }} 33$, $37^{\mathrm{b}} 17,38^{\mathrm{b}} 25,39^{\mathrm{a}} 23$; hawking for, $41^{\text {b }} 15-27$; hibernating, $35^{\text {a }}$ 15 ; wise birds of Diomedeia, $36^{\text {a }}$ 7-14.
Bisaltae, Mir. $42^{\text {a }}$ I5.
Bison, Mir. $30^{\text {a }}{ }^{5-25}$.
Bithynia (Thracian), Mir. $32^{\text {b }} 27$.
Bitterness in fruit, cause of, Pl. $29^{\text {a }}$ 36 ff.
Bitumen, Mir. $41^{\text {a }} 33,42^{\text {b }} 15$.
Bitys, avenged by his statue, Mir. 46^{a} 22-24.
Black, Col. $94^{\mathrm{a}} 32$, $96^{\mathrm{a}} 20^{\mathrm{b}}$ 2, $96^{\mathrm{b}} 4$, $12,16,24,97^{2} 21, b_{14}, 20,28,34$, $98^{\text {a }} 1$-10, $26,{ }^{\text {b }} 2,10,13-24,99^{\text {b }}$ 19 ; conditions of, $9^{\text {a }} 10^{-b} 6,91^{b}$ ${ }_{17}-92^{\text {a }} 1,93^{\text {a }} 26-32,94^{b} 28-95^{\text {a }}$ Io, $96^{\mathrm{a}}{ }_{17}, 97^{\mathrm{b}} 2-7$; in colourblends, $92^{\mathrm{a}} 8-14,92^{\mathrm{b}} 7,93^{\mathrm{a}} \mathrm{I}-5$, $94^{\text {b }} 3,29,95^{\text {a }} 3,32,{ }^{b} 18,27-32$, $96^{\mathrm{a}} 7,10,97^{\mathrm{a}} 6 ;$ Ph. $7^{\mathrm{b}} 19,36$, $8^{\mathrm{a}} 17,19,{ }^{\mathrm{h}} 5,12^{\mathrm{a}} 12, \mathrm{~b}^{\mathrm{b}} ;{ }^{2} ; P l$. b.-ness in plants, $20^{\mathrm{b}} 20$: in wood, $27^{\mathrm{b}} 30$; Mir. b. clothes, why worn in Daunia, $40^{\text {b }}$ 6-15.

Blackbird, white in Cyllene, Mir. $3 I^{b}$ I4.
Black Mountains, Mir. $46^{\text {a }} 26$.
Blinking, $P h .7^{\mathrm{b}} 7,37,8^{\mathrm{a}} 1,13^{\mathrm{a}} 20$.
Blood, Col. $96^{\mathrm{a}}{ }_{15}, 98^{\mathrm{b}} 18 ;$ Ph. $13^{\text {b }}$ $7-33 ; P l .24^{\text {b }}$ 19.
Blue, Col. $94^{\text {a }} 12,95^{\mathrm{b}} 27,96^{\mathrm{a}} 17$, $20 ; P l$. in flowers, $28^{\text {b }} 35$; Mir. $43^{i} 25$.
Blue-grey, Col. flowers, $28^{\text {b }} 37$; leaves, $28^{\text {b }} 2$; in trees, $29^{\text {a }} 26$.
Blushing, Ph. $12^{\text {a }} 3$ I.
Boar, wild, Ph. $6^{6} 9$.
Body, Ph.b. and soul, $5^{\mathrm{a}} \mathrm{I}-18,8^{\mathrm{b}}$ 11-29; build of, $6^{\mathrm{a}} 32,8^{\mathrm{a}} 25,30$, ${ }^{\mathrm{b}} 8,9^{\mathrm{b}}$ Io, $3 \mathrm{I}, 1 \mathrm{I}^{\mathrm{a}} 6,14^{\mathrm{a}} \mathrm{I}-5$; Lin. joints in, $72^{\text {b }} 31$.
Boeotia, Mir. $38^{\mathrm{b}} 3,42^{\text {b }} 3,5,43^{\text {b }}$ I9.
Bold spirit, Ph. $12^{\mathrm{a}}{ }^{1}$ 15, ${ }^{\mathrm{b}} 2,5,24,33$; see also Courage.
Bolinthus (bison), Mir. $30^{\text {a }} 7$.
Bones, Ph. $7^{\text {a }} 32$.
Bony substance, Pl. $20^{a} 37$.
Boreas (N. wind), Vent. 73^{a} I, 7,12 .
Bow, Aud. ob ${ }^{\text {b }} 4$.
Bow and arrows, of Heracles, Mir. $40^{17} 17$.
Bowl of inflammable mixture, Mir. $32^{\mathrm{b}} 26$.
Bows, of a ship, Mech. $51^{\mathrm{a}} 32,36,{ }^{\mathrm{b}} 9$.
Box-tree, Mir. $31^{\text {b }} 23$.
Brain, Pl. $24^{\mathrm{b}} 20$.
Bramble, $P l$. $19^{\mathrm{b}} 9,20^{\mathrm{a}} 20$.
Branches, Pl. $18^{a} 12,19^{a} 16,18,26$, $30,{ }^{\mathrm{b}} 4,7,10,20^{\mathrm{b}} 3 \mathrm{I}, 21^{\mathrm{b}} 24$; causes of variety in, $28^{\text {a }} 27$; not found in some trees and plants, $19^{3} 27,20^{\text {a }} 20$; shed each year, $19^{3} 28$.
Brass instruments, $A u d$. $I^{\mathrm{b}} 9$.
Brave, see Courage.
Breaking, of the voice, Aud. $4^{\mathrm{a}} 17$.
Breast, see Chest.
Breath, emission of, and voice, see Voice.
Brightness (of colour), Col. $92^{\text {a }} 15$, 28, $93^{\text {a }} 11,94^{\text {a }} 33^{-\mathrm{b}} 7,97^{\mathrm{a}} 8$.
Brimstone, Col. $92^{\mathrm{b}} 27,93^{\mathrm{b}} 6 ; P l$. $26^{\mathrm{a}} 4,8$.
Brine spring, Mir. $44^{\text {b }}$ 9-22.
Bronze-work, Aud. $2^{2} 37$.
Brown, Col. $92^{\text {a }} 27,94^{\mathrm{b}} 5,95^{\mathrm{b}} 19$, $97^{2} 6$.
Bucket, for drawing water, Mech. $57^{\mathrm{a}} 36,37,{ }^{\mathrm{b}} 6$.
Buds, $P l .21^{\mathrm{b}}$ Io.
Bull, Ph. $7^{\mathrm{a}} 19,1^{\mathrm{a}} 14,11^{\mathrm{b}} 35$;
golden, Mir. $47^{\text {b }}$ I ; see also Cattle.
Burning alive, as punishment for perjury, Mir. $34^{\text {b }}{ }^{15}$.
Bushes, Pl. $19^{\text {b }} 1$, 19; defined, $19^{\text {b }} 6$.
Bushy tails, animals with, $P h .8^{\text {b }} 35$.
Buttocks, Ph. 10^{b} I-4.
Byzantium, Mir. $31^{12} 15$.
Cabbage, $P l$. $19^{\text {b }}$ II.
Cadmeia, Mir. $35^{\text {a }}$ II (note).
Caecias (NE. wind), Vent. $73^{\text {a }} 8$, b_{I}.
Caldrons, Mir. $32^{\mathrm{a}} 7,45^{\mathrm{b}} 35$; miraculous c. in Elis, $42^{\text {a }}$ 27-34.
Callisthenes, Mir. $43^{\text {b }} 8$.
Camel, piety of the, Mir. $30^{\text {b }} 5-10$.
Cantharolethros, Mir. $42^{\text {a }} 6$.
Caphereus, Vent. $73^{\text {a }} 22$.
Cappadocia, Mir. $3 \mathrm{I}^{\mathrm{b}} 2 \mathrm{I}, 35^{\mathrm{b}} \mathrm{I}$.
Capstan, Mech. $52^{\text {a }} 30,33$.
Carbanians, Vent. $73^{\text {b }} 4$.
Carbas (SE. wind), Vent. $73^{\text {b }} 4$.
Caria, Mir. $44^{\text {a }} 35$.
Carriage (of body), see Gesture.
Cart, Mech. $52^{\text {b }}$ 12, 14, 18.
Carthage, Carthaginians, Mir. $36^{\text {b }}$ $3 \mathrm{I}, 34,37^{\mathrm{a}} 2,5,{ }^{\mathrm{b}} \mathrm{I}, 38^{\mathrm{d}} 20, \mathrm{~b}_{27}$, 41^{a} IO, 44^{a} 8, $10,32$.
Castanets, Mir. $39^{\text {a }}$ I.
Cat, $P h$. $11^{\text {b }} 9$.
Cataporthmias (E. wind), Vent. $73^{\text {a }}$ 25.

Catarrh, Aud. $1^{\text {a }}{ }^{16 .}$
Catkins, $P l .18^{2} 15$.
Catmint, $P l .21^{2} 30$.
Cattle, Col. $97^{\text {a }} 34,98^{\mathrm{b}} 20 ; P h$. II $^{\text {a }}$ $29,11^{\mathrm{b}} 6,10,21,28,30,13^{\mathrm{a}} 34$; Mir. $41^{\text {b }} 5$; Geryon's, $43^{\text {b }} 8$, $44^{\text {a }}$ 2 ; prolific in Illyria, $42^{\text {b }} 27$, in Umbria, $36^{\mathrm{a}} 20$; require salt, $44^{\text {b }}$ 19-23; wild c. of Paeonia, $42^{\text {b }}$ 32-35; see also Bull, Ox.
Caunias (NNE. wind), Vent. $73^{\text {a }}$ 4, 12.
Caunus, Vent. $73^{\text {a }} 3,4$.
Causes, of Empedocles (love and strife), $M X G .75^{\mathrm{b}} \mathrm{I} 5$.
Cave, at Cumae (the Sibyl's), Mir. $38^{2} 6$; in Demonesus (with stalactites), $34^{\text {b }} 31$; at Enna, $36^{\text {b }} 13$; at Orchomenus, $3^{8{ }^{b}} 5$.
Cedar, Mir. $41^{\text {a }} 15$.
Celtic tin, Mir. $34^{\text {a }} 7$.
Celtoligurians, Mir. $37^{\text {a }} 7$.
Celts, Mir. $37^{\text {a }} 7$, 12, 14.
Centaury, Pl. $20^{2} 36$.

Centre, Mech. $49^{\text {a }}$ 1, 13, 17, 19, 23, $\mathrm{b}_{24}, 50^{\mathrm{a}} 36,37, \mathrm{~b}_{16}, 51^{\mathrm{a}} 25,34$, ${ }^{b_{1}} 1,19,52^{\text {a }} 21, b 8,14,22,23,33$, $53^{\mathrm{b}} 3 \mathrm{I}, 55^{\mathrm{a}} 30,32, \mathrm{~b}_{2}, 6,10,19$, $29,56^{\mathrm{a}} 25,57^{\mathrm{a}} 14,30,58^{\mathrm{b}} 12,19$, 25.

Ceos, Mir. $45^{\text {a }} 15$.
Cephalonia, Mir. $31^{\text {a }} 19$.
Cerbes (River), Mir. $46^{\text {b }} 38$.
Cetus (River), Mir. $38^{2} 12$.
Chalcedonians, Mir. $34^{\text {b }} 18$.
Chalcidice, Mir. $42^{\text {a }} 5$.
Chalcis, Mir. $32^{\text {a }} \mathbf{1}, 42^{\text {a }} 5$ (note).
Chalybians, Mir. $32^{\text {a }} 23$; C. iron, $33^{\mathrm{b}} 22$.
Chameleon, Mir. $32^{\text {b }}{ }^{14}$.
Chaos (in Hesiod), MXG. 75^{a} 12, $76^{\text {b }} 16$.
Charcoal, Col. $91^{\text {b }} 26,92^{\prime} 14,92^{\text {b }}$ 27 ; Mir. $33^{2} 25,41^{\text {a }} 30$.
Chariots racing on the sea, $M X G$. $80^{\mathrm{a}} 12$.
Charisia or love-plant, Mir. $46^{\text {b }} 7$.
Charms, against adultery, Mir. $46^{\text {a }}$ 28-31; against demons and spectres, $46^{\text {a }} 33-37,46^{\text {b }} 22-25$; against snakes, $45^{\text {b }} 23-32$; against wild beasts, $46^{3} 31-33$; lovecharms, $46^{\mathrm{b}} 7-9$.
Chaste-tree, $P l .19^{\mathrm{b}} 2 \mathrm{I}$.
Chastity, test of, Mir. $41^{\text {a }} 17$.
Cheerfulness, see Good Spirits.
Cherries, Pl. $20^{\mathrm{b}} 13$.
Chest, or breast, $P h .7^{\mathrm{a}} 35, \mathrm{~b}_{33}, 8^{\mathrm{a}}$ $22, \mathrm{~b}_{3}, 9^{\mathrm{b}} 6,27,10^{\mathrm{a}} 3, \mathrm{~b}_{2} 3,29,12^{\text {a }}$ $26,{ }^{\mathrm{b}} 14,17$; position of, in rising from sitting posture, Mech. $57^{\text {b }} 23$ 32.

Chestnut eyes, $P h .12{ }^{\text {b }} 3$; see also Yellow.
Chian wares, Mir. $39^{\text {b }} 7$.
Chick-pea, Mir. $46^{2} 35$.
Children, colour of hair, Col. $97^{\text {b }}$ 24-29, $98^{\text {a }} 30-32$; voice, Aud. $1^{\mathrm{b}} 5,3^{\mathrm{b}} 19$.
Chin, Col. $97^{\text {b }} 30$.
Cilicia, Mir. $32^{\text {b }} 4$.
Circaean mountain, Mir. $35^{\text {b }} 33$.
Circaeum, Vent. $73^{\text {b }} 20$.
Circias (NNW. wind), Vent. $73^{\text {b }}$ 20.

Circle, Mir charmed c., $45^{\mathrm{b}} 23$; Mech. $48^{\text {b }} 35,49^{\text {a }} 3,22,36$, 38, $50^{\text {b }} 4,52^{\text {a }} 37$; angles made by, $51^{\text {b }} 24,38,55^{\mathrm{a}} 36$; inclination of, $5 \mathrm{I}^{\mathrm{b}} 28-35,52^{\mathrm{a}} 2,7,10$; infinity of smaller c. always describable,
52^{a} 1；larger c．moves more quickly than smaller， $58^{\mathrm{b}} 9,17$ ， 28，move other objects more easily， $52^{a} 14-22,37-40$ ，them－ selves move more easily， $5 \mathrm{I}^{\text {b }} 37$ ， when rolled trace longer paths， $55^{\mathrm{a}} 35$ ；the c．is made up of contraries， $47^{\text {b }} 19-48^{\mathrm{a}} 3$ ；marvel－ lous properties of， 47^{b} I7 ff ．； motion of， $48^{\mathrm{a}} 18,52^{\mathrm{a}} 11,55^{\mathrm{b}} 8$ ， $56^{\mathrm{a}} 8 \mathrm{ff}$ ；moves in two contrary directions simultaneously， $48^{\mathrm{a}} 4$ ， 22 ff ．；movement of one c．by another， $56^{\text {a }} \mathbf{I} \mathrm{ff}$ ．；paths of large and small c．differ when rolled separately and when placed about the same centre， $55^{\mathrm{a}} 28 \mathrm{ff}$ ；；re－ volve in three different ways， $5 \mathrm{I}^{\text {b }}$ 16－21；smallness of contact of， $51^{\text {b }}$ $22,25,52^{3} 8$ ；successive circles in whirling water， $5^{8^{b}} 6 \mathrm{ff}$ ；Lin． $71^{\mathrm{b}} 16$ ；see also Arc，Centre，Cir－ cumference，Diameter，Radius．
Circular bodies，why easily moved， Mech． 51^{b} I5 ff．
Circular process of things coming into being out of one another， $M X G .75^{\text {in }} 25-27,32$.
Circumference，Mech．of a circle， $51^{\mathrm{b}} 17,52^{\mathrm{a}} 4,11,58^{\mathrm{b}} 13$ ，angle between diameter and c．， $55^{3} 36$ ， continual motion in， $5 \mathrm{I}^{\mathrm{b}} 35$ ； earth＇s c．，angle formed with， $57^{\text {b }}$ 27 ； Lin ．of a circle， $71^{\mathrm{b}} 16,17$.
＇Circumnavigation＇of Hanno，Mir． $33^{\text {a }} 10$ ．
Cius，Mir． $34^{\text {a }} 34$.
Clavicles，Ph． $9^{\text {b }} 26$ ， 11^{a} 5－10．
Claws，Col． $97^{\text {b }} 19$ ；Ph． $10^{\text {a }} 21$ ， $12^{\mathrm{a}} 8$ 。
Cleonymus of Sparta，Mir． $36^{\text {a }} 4$ ．
Climate and character，$P h .6^{\text {b }}{ }^{16-}$ 18.

Clouds，colour of，Col． $91^{\text {a }} 25,93^{\text {b }} 9$ 。 Cnidus，Mir． $31^{\text {b }} 19$.
Cock，Aud．ob $24 ; P h .6^{\text {b }} 14,7^{\text {a }} 19$ ， $11^{b} 1,12^{b} 12$ 。
Cognition，truth and falsehood in， $M X G .8 \mathrm{o}^{\mathrm{a}}$ Io ff．
Coincidence， $\operatorname{Lin} .71^{\text {a }} 31$ ；of lines， $71^{2} 23$ ；of simples ${ }^{5}, 71^{8} 30$.
Cold，$P h$ ．temperament， $12^{\text {a }}$ I9；$P l$ ． effect of，on plants， $25^{\text {b }} 24,28^{\text {a }}$ 40 ；Mir．causes analgesia， $35^{\text {a }}$ 15－21；renders snakes harmless， $45^{3} 10-14$ ．
Colour，Col．simple，of the elements，
$91^{2} \mathrm{I}-92^{\mathrm{a}} 3,92^{\mathrm{a}} 32-34$ ；mixtures of， $91^{\mathrm{a}} 11,92^{\mathrm{a}} 4-94^{\mathrm{a}} 15,95^{\mathrm{b}} 5-96^{\mathrm{b}} 3$ ， $97^{\text {a }} 20-26,99^{\text {b }} 2-10$ ；secondary and tertiary， $92^{\mathrm{a}} 30-\mathrm{b} 32$ ；causes of variety of， $93^{\mathrm{a}} \mathrm{I}-94^{\mathrm{a}} 15,97^{\mathrm{b}} 10$ ； variations in purity of， $92^{a} 5$ ， $93^{\mathrm{a}} 10,93^{\mathrm{b}} 14-30$ ；variations in strength of， $92^{2} 5,93^{\text {a }}$ 1－9；ap－ parent colour the predominant hue of a blend， $93^{\text {b }} 29,95^{\text {b }} 4$ ，the resultant of light，translucent medium and colour of thing， $94^{\text {a }}$ I ；conveyed by tincture， $93^{2}{ }^{24} 4^{-}$ ${ }^{\mathrm{b}} 2$ ， $94^{\mathrm{a}}{ }^{16-{ }^{\mathrm{b}}} 11$（see also Tinc－ ture）；modified by saturation， $94^{\text {b }} 12-99^{\text {b }} 20$ ；of lower animals and men， $97^{\mathrm{a}} 33-99^{\mathrm{b}} 19 ; P h$ ．of lower animals， $9^{\text {b }} 35,10^{a} 6,12^{\text {a }}$ 12－17，b 3 －12；of men， $6^{\text {b }} 3-5$ ， $7^{\mathrm{b}} 2,17,19,32,8^{\mathrm{a}} 17,20,34,{ }^{\mathrm{b}} 4^{-}$ 8 ， $12^{\mathrm{a}} \mathrm{I}_{2} \mathrm{~b}_{12}, 13^{\mathrm{b}} 12-36 ; P l$ ．in flowers， $28^{\mathrm{b}} 34-37$ ；in flowers and fruits， $20^{\mathrm{b}} 17 \mathrm{ff}$ ．；in leaves， $28^{\mathrm{b}} 2$ ； in plants and trees， $19^{2} 2,27^{b} 18$ ff．， $28^{\text {b }} 15,21 \mathrm{ff}$ ．， $29^{\text {a }} 24 \mathrm{ff}$ ；Mir． changeable，of chameleon， $32^{\text {b }}$ 14；of elk， $32^{\text {b }} 9-13$ ；of polypus， $32^{\text {b }} 14$ ；of serpents， $46^{\text {b }} 10-15$ ； of Tmolus stone， $47^{\text {a }} 9$ ；$M X G$ ． perception of c．， $80^{\mathrm{b}} \mathrm{ff}$ ．
Colours，names of，Col．brown
 crimson（фоєע८кoûs），dark－blue （кvavocións），flame－colour（ ϕ 入oyo－

 pale pink or red（ $\lambda \in \cup к о ́ \pi \pi v \rho \rho o s)$, purple（ $\pi \circ \rho \phi \nu \rho o \epsilon \iota \delta \eta^{\prime} s$ ），red（ $\pi v \rho-$ рós），saffron（крокоєіठ́ク́s），wine－ colour（oiv $\omega \pi o ́ s$ ），violet（à ${ }^{\text {a }}$ ovp $\gamma \dot{\eta}$ s）， yellow（ g^{2} OÓs），yellow－green （ $\chi \lambda \omega \rho o ́ s$ ），white．Less strictly， black，and hazy（àєpoeión＇s）． Additional colours in Ph．，fiery （ $\epsilon \pi เ \phi \lambda \epsilon \gamma \dot{\prime} s, \pi v \rho \dot{\prime} \dot{\delta} \eta s$ ），grey（ $\gamma \lambda a v$－ kós，of eyes），honey－pale（ $\mu \in \lambda i-$ $\chi^{\lambda \omega \rho \omega s), ~ p a l e ~(~} \epsilon \nu \omega \chi \rho \rho s, ข ँ \pi \omega \chi \rho \circ \varsigma$ ， ढ̀хpós，入єuкóхpous），pale pink （ $\lambda \in \cup \kappa \in ́ \rho \cup \theta \rho o s)$, red，reddish（épv－ Өрós，$\epsilon \pi i \pi v \rho \rho o s) . ~ P l$. black（ni－ ger），blue－grey（glaucus），bright blue（color lazuli），green（viridis）， grey（venetus），red（ruber），white （albus）．Mir．，blue（kuavoûs）， dark（̧ŋфєрós，$\pi \epsilon \rho \kappa \nu o ́ s)$ ，green， bright green $(\chi \lambda o a ́ \zeta \omega \nu)$ ，pale green
($\chi \lambda \omega \rho o ́ s)$, purplish ($\pi o \rho \phi u \rho i ́ \zeta \omega \nu)$, yellow (ξ av ${ }^{\text {ós }}$).
Combs of birds, Col. $99^{\text {b }} 14$.
Combustion and colours, Col. $91^{\text {a }}$ $6,{ }^{\mathrm{b}} 18-24,93^{\mathrm{b}}$ 3-7.
Commensurate, lines, Lin. $68^{\text {b }} 6$-8, $69^{\mathrm{b}} 6-12,70^{2} \mathrm{I}$; indivisible lines are c. $70^{\text {a }} 3$; c. squares, $68^{\text {b }} 15$, $70^{2} 2,3$.
Communication, impossibility of (Gorgias), $M X G .79^{\mathrm{a}} 12,80^{\mathrm{a}} 19$ ff., ${ }^{\mathrm{b}}$ I8.
Compassion, $P h .8^{\mathrm{a}} 33^{-\mathrm{b}_{2}}$.
Complex numbers, Lin. $69^{\text {a }} 14$.
Complexion and hue of body, $P h$. $6^{\mathrm{a}} 29,6^{\mathrm{b}} 3-5,7^{\mathrm{b}} 2,17,32,8^{\mathrm{a}} 17$, $20,34,{ }^{b} 4-8,12^{a} 12-^{b} 12,13^{b} 12-$ 26.

Composite, lines, Lin. $70^{\mathrm{b}} 7-9$; magnitude, $68^{\text {b }} 26$; time, $70^{b} 9$.
Concave, Mech. $47^{\text {b }} 25,48^{\text {a }} 2$.
'Concoction', $P l$. process of, $22^{2} 27$; in the air, $25^{\text {a }} 29$; in animals, $22^{\text {a }}$ $26,28^{\mathrm{a}} 10,20$; in the earth, $25^{\text {b }}$ 27 ; in metals, $22^{3} 26,28,31 \mathrm{ff}$.; in olives, $27^{\mathrm{b}} 1 \mathrm{ff}$; in plants and trees, $22^{\mathrm{a}} 26,29,{ }^{\text {b }} 4,25^{\mathrm{a}} 27, \mathrm{~b}^{\mathrm{b}} 8 \mathrm{ff}$., $28^{\mathrm{a}} 6 \mathrm{ff} ., 29,{ }^{\mathrm{b}} 7,8$; in stones, $22^{\text {a }}$ 28, $26^{2} 27$.
Concord, Aud. $3^{\text {b }} 40-4^{\text {a }} 8$.
Conflict of sounds, $A u d$. I $^{\text {b }}$ I 5-20.
Congruity of feature with character, argument from, Ph. $9^{\text {a }} 13-18,29$, $10^{*} 34,35,{ }^{b} 9,30, I^{\mathrm{a}} 2,5,{ }^{\mathrm{b}} \mathrm{I}_{3}$, $19,24,13^{\text {a }} 1,18,26,33, b_{1}, 3$, $14^{a} 7$.
Consumption, Mir. $46^{\text {a }} 3$.
Contact, of continuous things, Lin. $71^{\text {a }} 26-30$; of point with line, $72^{\text {a }}$ 24-29, with point, $71^{\mathrm{a}} 27, \mathrm{~b}_{4}-72^{\text {a }}$ 6 ; of 'simples', $70^{\mathrm{a}} 30,71^{\mathrm{b}} 7,23$.
Contiguous, Lin. $7 \mathrm{I}^{\mathrm{a}} 26$.
Continua, Lin. $69^{\text {a }} 34,71^{\text {a }} 16$.
Continuous, Lin. $68^{\text {b }} 23,70^{\text {a }} 24,25$, ${ }^{\mathrm{b}} 28,7 \mathrm{I}^{\mathrm{a}} 18,20, \mathrm{~b}_{2}$, 31 ; defined, $71^{\mathrm{b}} 29,30 ; M X G .80^{\mathrm{a}} 4$.
Contraries in the circle, Mech. $47^{\text {b }}$ 19 ff .
Contrary, predicates, $M X G \cdot 78^{\text {b }}$ 17 ff. ; propositions, $74^{\text {b }} 29$; opinions about Being, $74^{b} 19,79^{a} 13^{-}$ 18.

Contrast, Col. $94^{\text {b }}$ I-4.
Convex, Mech. $47^{\text {b }} 25,48^{\mathrm{a}} 2$.
Cooking by volcanic fires, Mir. $32^{b} 29-33^{a} 4$.
Copper, Col. 93^{a} 19, $27,{ }^{\mathrm{b}} 6,94^{\mathrm{b}} 9$;

Mir. $36^{2} 26$; c. and iron from one mine, $37^{\text {b }} 26-32$; flower of c., $34^{\text {b }} 30$; good for eyesight, $34^{\text {b }} 27-$ 3 I ; got by divers, $34^{\text {b }} 22$; grown as a crop, $33^{\mathrm{a}} 30^{-\mathrm{b}} 3$; Indian, 34^{a} 1-5 ; mountain c., $34^{\mathrm{b}} 25$; white c., $35^{\mathrm{a}} 9-\mathrm{I} 4$.
Copulation, of vipers, Mir. $46^{\text {b }} 17$ 21.

Corcyraean jars, Mir. $39^{\text {b }} 8$.
Cord, of a balance, Mech. $49^{\text {b }} 24$, $27,36,52^{\mathrm{a}} 20,21$, attached above, $50^{\text {a }} 2,7,19$, below, $50^{\text {a }} 5,21,34$; of a pulley, $53^{\mathrm{a}} 34,37, \mathrm{~b}^{\mathrm{b}} 7$; of a steelyard, $53^{\text {b }} 31,36,39,54^{\text {a }} 2,7,8$.
Corinthians, Ph. $8^{\mathbf{a}} 31$.
Corn, colour of, Col. $97^{\text {a }} 19$; famine of, in Lacedaemon, Mir. $32^{\text {a }} 20$.
Coronea in Boeotia, Mir. $42^{\mathrm{b}} 3$.
Couch, as measure of area, Mir. $30^{\mathrm{a}} 16,34^{\mathrm{b}} 8,42^{\mathrm{b}} 22$.
Count, counting, Lin. $68^{\text {b }} 2,69^{a} 31$; defined, $69^{\text {b }} 3$.
Counterpoise in a steelyard, Mech. $53^{\mathrm{b}} 26,34,37,54^{\mathrm{a}} 5,15$.
Courage, Ph. 5b $3,25,31,6^{\mathrm{a}}$ 1-4, ${ }^{\mathrm{b}} 6-16,27,7^{\mathrm{a}} 18,33^{\mathrm{l}} \mathrm{b}_{4}, 9^{\text {a }} 28$, ${ }^{\mathrm{b}} 13,12^{\mathrm{a}} 14,14^{\mathrm{a}} 3,8$; see also Bold spirit.
Coverings, of fruit, $P l .18^{a} 34$; of plants, $18^{a} 37$.
Cowardice and timidity, $P h .5^{\text {b }} 26$, $6^{\mathrm{b}} 6-18,27,7^{\mathrm{a}} 18,{ }^{\mathrm{b}} 5-12,8^{\mathrm{b}} 1,9^{\text {a }}$ $28,{ }^{b_{1}}{ }_{3}, 10^{\mathrm{a}} 23,11^{\mathrm{a}}{ }^{1} 6, \mathrm{~b}_{7}, 12^{\mathrm{a}}{ }^{1} 3$, 17, ${ }^{\text {b }} 1,4,9,29,31$; $13^{\text {a }} 20$; see also Fear.
Crane, Aud. $\mathrm{o}^{\mathrm{a}} 26$.
Crannon, Mir. $42^{\text {b }}$ Io.
Crastonia, Mir. $42^{\text {a }}$ I 5 .
Crater, Mir. $46^{2} 9$.
Crathis (River), Mir. $46^{\text {b }} 34,35$.
Crete, Mir. $30^{b} 20,35^{\text {b }} 2,36^{\text {a }} 29$, ${ }^{\mathrm{b}} 27$; Vent. $73^{\mathrm{a}} 21$ 1.
Crimea, Pl. $21^{1}{ }^{\mathrm{b}} 7$.
Crimson, Col. $92^{\mathrm{a}} 7,9-14,28, \mathrm{~b}_{2}$, 10, $93^{\mathrm{a}} 7,{ }^{\mathrm{b}} 24,95^{\mathrm{b}}$ I, $27,29,96^{\mathrm{a}} 4$, 10, $14,24,29,31,96^{\text {b }} 4,9,15,24$, $97^{\mathrm{a}} 28,99^{\mathrm{a}} 10-14,99^{\mathrm{b}} 3$.
Crocodile, Mir. $31^{\mathrm{a}}{ }^{12}$.
Croesus, Mir. $34^{\text {a }} 24$.
Cross-bar, of stringed instrument, $A u d .3^{\text {a }} 40$.
Croton, Mir. $40^{\text {a }} 17,20$.
Crowns of olive at Olympia, Mir. $34^{2} 17$.
Crows, tales about, Mir. $37^{\text {b }} 20$, $42^{\mathrm{b}} \mathrm{IO}, 44^{\mathrm{h}} 6$.

Cubit, Mech. $53^{\text {a }} 7,8,56^{\text {b }} 4$.
Cuckoo, habits of, Mir. $30^{\text {b }}$ 11-19.
Cucumber, Pl. $20^{\mathrm{Z}} 38$.
Cumae, Mir. 38a 5-12, $39^{\text {a }}$ 12, 29.
Cunning, Ph. $10^{2} 8$.
Curium, Mir. $45^{\text {a }}$ Io.
Curved lines, $\operatorname{Lin} .71^{\text {b }} 21$.
Cuticle, $P l .20^{\text {b }}$ II.
Cyanos, Mir. $34^{\text {b }} 20$.
Cyclopes, Mir. $42^{2} 1 \mathrm{I}$.
Cylinder, Mir. $46^{\text {b }} 4$.
Cyllene, Mir. $31^{\text {b }} 14$.
Cymbals, Mir. $39^{\mathrm{a}} \mathrm{I}$.
Cyprus, Mir. $32^{\mathrm{a}} 22 u, 33^{\mathrm{a}} 3 \mathrm{I}, 45^{\text {a }}$ Io.
Cyrene, Mir. $32^{\text {a }} 31$, $35^{\text {a }} 33$; Vent. $73^{\mathrm{a}} 2 \mathrm{I}, 22, \mathrm{~b}_{4}$.
Cythera, Mir. $43^{\text {b }} 27$.
Daedalus, Mir. $36^{\text {a }} 27,36$, b 7,1 I.
Dancing, love of, $P h .8^{\mathrm{a}} 3 \mathrm{I}$.
Danube, see Ister.
Darius, Mir. $34^{\text {a }} 3$.
Dark, darkness, Col. $91^{1}{ }^{12}$; not a colour, $9 \mathrm{I}^{\mathrm{b}} 2$; without definite size or shape, $9 \mathbf{I}^{b} 5$; see also Black:; Mir. d. colour, $43^{\text {a }} 25$ (ऽ८фєрós), $46^{\mathrm{b}} \mathrm{I} 8$ (π еркцós); d. rocks (Symplegades), $39^{\text {b }} 14,40^{a}$.
Dark-blue, see Blue.
Dates, colour of, Col. $95^{\mathrm{b}} 26$; Pl. $20^{\mathrm{a}} 34, \mathrm{~b}^{2}, 9,21^{\mathrm{a}} 22$; see also Palm.
Daunia, Daunians, Mir. $40^{\text {b }} 1,6$.
Dead, worship of, Mir. 40 6-26.
Dead Sea, Pl. $24^{a} 26$.
Decay and generation balancing one another, $M X G .75^{\text {b }} 34$.
Deduction, Ph. $7^{\text {a }} 2-13,9^{\text {a }} 19-25$.
Deer, Col. $98^{\mathrm{a}} 26$; Ph. $5^{\mathrm{b}} 18,6^{\mathrm{b}} 8$, $7^{\mathrm{a}} 20,1^{\mathrm{s}} 16,{ }^{\mathrm{b}} 2,7$.
Deiope, Mir. $43^{\mathrm{b}} 3$.
Delirium, Mir. $47^{\text {b }} 9$.
Delphium (Mt.), Mir. $39^{\text {b }}$ I.
Demaratus, Mir. $47^{\text {b }} 7$.
Demeter, Mir. $36^{\text {b }} 25,43^{\text {b }} 1$.
Democritus, $P l .15^{\text {b }} 16 ; M X G .75^{\text {b }}$ 28.

Demonesus, Mir. $34^{\text {b }} 18$.
Demons, charm against, Mir. $46^{\text {a }}$ 36 ; cure for possession by, $46^{\mathrm{b}} 22$ 25.

Dense, density, Pl. 22^{b} II ff., $24^{\mathrm{a}} 30$; $M X G .75^{\mathrm{b}} 26,76^{\mathrm{b}} 3 \mathrm{ff}$. 77^{Ba} I.
Dentist, Mech. $54^{\text {a }}{ }^{16,29 .}$
Depth, apparent, in pictures, Aud. $1^{\text {a }} 32-36$.

Desert, Pl. $25^{\text {a }} 34$; d. wind, $18^{\text {b }}$ I 3.
Desire in plants, Pl. I $5^{\mathrm{a}} 22,{ }^{\mathrm{b}} 16,20$.
Despondency, Ph. $13^{\text {a }} 33$; see also Low spirits.
Determination, of character, $P h$. $13^{\mathrm{a}} 4$.
Diagonal, Mech. $48^{\text {b }}$ 13, 23 ff., $49^{\text {a }}$ $5,54^{\mathrm{b}} 20,25 \mathrm{ff}, 55^{\mathrm{a}} \mathrm{I}, 6$; of a square, $\operatorname{Lin} .70^{\text {a }} 12-17$.
Diagonally, bed-ropes not stretched, Mech. $56^{\mathrm{b}} 2,5 \mathrm{ff}$.
Diameter of a circle, Mech. $4^{8 \mathrm{a}} 2 \mathrm{I}$ ff., $49^{\mathrm{a}} 24,37,51^{\mathrm{b}} 28,30,52^{\mathrm{a}} 13$, $55^{a} 37$.
Diet, Ph. $8^{\mathrm{b}} 23$.
Diomedela, Mir. $36^{\text {a }} 7$.
Diomedes, Mir. $36^{\mathrm{a}} 8,15,16,40^{\mathrm{b}} 3$, 20.

Dionysius, the Elder, Mir. $38^{\text {a }} 19$; the Sophist, $P h .8^{a} 16$.
Dionysus, festival of, Mir. $42^{\text {a }} 26$; temple of, $42^{2} 18$.
Discrete, doctrine that times and lengths consist of d. elements, Lin. 71^{k} 16-20, denied, $71^{\mathrm{b}} 3,4$.
Dishonesty, Ph. $9^{\text {a }} 28, \mathrm{~b}^{\mathrm{b}}$ I 3 .
Dissimilar, Pl. division by d. parts, 18a22-29; MXG. $77^{\mathrm{a}} \mathrm{I}_{15}, \mathrm{~b}^{\mathrm{b}} 23$, $25,80^{\mathrm{b}} 12$; Being not d., $76^{\mathrm{b}} 11$, if Being is $\mathrm{d}_{\text {., }}$ it would be many, $74^{\text {a }} 13$; that which consists of d. parts is many, $76^{\text {a }} 22,23$.
Distance, apparent, of sounds, Aud. $1^{\text {a }} 36^{-b}$.
Dittany, Mir. $30^{\text {b }} 2 \mathrm{I}$.
Divers, raising copper, Mir. $24^{\text {b }}$ 23.

Division, $P l$. by similar and dissimilar parts, $18^{\text {a }} 22-29$; Lin. finite number of divisions, $68^{\mathrm{a}} 6,69^{\mathrm{a}} 7$, $9,11,13,16$; infinite number of, $68^{\mathrm{a}} 4, \mathrm{~b}_{22}, 25,69^{\mathrm{a}} 2,3$, 10 ; d. of a line is a point, $72^{\text {a }} 28,29$; ratio of d., $69^{a} 4$; d. of time and length, $69^{2} 30$.
Doctor, Ph. $6^{\mathrm{a}}{ }_{16} 6,8^{\mathrm{b}} 23$.
Dodder, Pl. $27^{\mathrm{a}} \mathrm{I}$.
Dog, Col. $98^{\mathrm{b}} 7,20 ;$ Ph. $5^{\mathrm{a}} 17,7^{\mathrm{a}} 19$, $8^{\mathrm{b}} 37,10^{\mathrm{a}} 21,28,32,{ }^{\mathrm{b}} 5,11^{\mathrm{b}} 32$, $37,12^{\mathrm{a}} 7,10, \mathrm{~b}, 24,13^{\mathrm{b}} 3$; Mir. $30^{\text {a }} 21,36^{\mathrm{b}} 18,38^{\mathrm{b}} 4,41^{\mathrm{b}} 6,45^{\mathrm{a}} 18$, $22,27,46^{a} 25,{ }^{\text {b }} 23$; wise dogs of Daunia, $40^{\text {b }} 5$.
Dogstar, Pl. $21^{\mathrm{b}} 5$.
Domed buildings in Sardinia, Mir $38^{\mathrm{b}} 14$.
Dorylaeum, Vent. $73^{\text {b }} 15$.

INDEX

Dove, Col. $93^{\text {a }} 15,99^{\text {b }} 12$; see also Ring-dove, Turtle-dove.
Drawing of water with a 'swipe', Mech. $57^{\text {a }} 34$ - $^{\text {b }} 8$.
Dropsy, Mir. $46^{2} 3$.
Drum, Mir. $38^{\text {b }} 34$.
Drunkenness, utterance in, Aud. $1^{\text {b }} 6$; facial signs of, $P h . ~ I I^{b} 14$, $12^{\text {a }} 33$, referred to, $5^{a} 4$.
Dryness, in the earth, Pl. $23^{\text {b }} 28$; in plants, $18^{\mathrm{b}} 39,26^{\mathrm{a}} 34,29^{\mathrm{b}} 27$, $29,40,30^{\mathrm{a}} 4,{ }^{\mathrm{b}} 3$; in salt water, $24^{\text {b }} 36$; in the sea, $23^{\text {b }} 15$.
Ducts in plants, $P l .26^{\mathrm{d}} 36,27^{\mathrm{b}} 39$, $28^{\text {a }} 5,34,{ }^{\text {b }}$ II $, 17,19,26,28,29$, $29^{\text {b }} 36,39$.
Dullness of sense, see Sense-perception.
Dumbness, caused by hyaena, Mir. $45^{\text {a }} 26$; in madness, $47^{\text {b }} 8$.
Dyeing, Col. $94^{\text {a }}$ 16-b $^{\text {b }}$ I, $95^{\text {b }}$ Io- 20 , $97^{2} 3-8$; see also Tincture, coloration by.
Dyes, sources of, Col. 94 ${ }^{\text {a }} 16-30$, $95^{\text {b }} 11$ - 21 .

Eagle, Ph. $11^{\mathrm{a}} 37,12^{\mathrm{b}} 6$; Mir. 34^{b} 35, black e., $35^{\mathrm{a}} 2$, sea-e., $35^{\mathrm{a}} \mathrm{I}$. Ears, Ph. $12^{a} 9^{-11}$.
Earth, Col. natural colour of, white, $91^{a} 4$; coloured by tincture, $91^{\text {a }}$ $5,94^{\text {a }} 19$; as a dye, $94^{\text {a }} 19 ; P l$. dryness in, $23^{\text {b }} 28$; element of, in plants, $22^{\mathrm{a}} 12, \mathrm{~b}_{2}, 23^{\mathrm{b}} 2,26^{\mathrm{b}} 3 \mathrm{I}$, $27^{\text {b }} 28$; naturally fresh, $23^{\text {b }} 20$; naturally lower than water, $23^{\text {b }} 3$, $24^{\text {a }} 8$; neither increases nor decreases, $22^{\text {a }} 39$; Mir. hot in Pithecusa, $33^{\text {a }} 15$; refills holes in Melos, $33^{\mathrm{b}} 4 ; M X G$. creation of, acc. to Hesiod, $75^{\text {a }} 12$; an eternal element, $75^{\text {b }} 5$; the universal element, $76^{2} 18$; its depth unlimited, $76^{a} 32,35$.
Earthenware, Col. $91^{\text {b }} 20$; Aud. $\mathrm{I}^{\text {a }}$ 28, $2^{\text {b }} 3,4^{\text {a }} 34$; Mir. $32^{\text {a }} 8$; see also Pottery.
Earthquake, $P l .22^{\mathrm{b}} 34,38,23^{\mathrm{a}} \mathrm{ff}$.; Mir. $37^{\text {a }} 27$.
East wind, Mir. $44^{\text {a }} 25$, Vent. $73^{\text {a }}$ 13 ff .
Ebony, colour of, Pl. 28b 23,24 ; why it does not float, $23^{\text {a }} 27,28^{\text {b }}$ 25, 26.
Effectiveness, see Persistence.
Effeminacy, Ph. $8^{a} 10,13^{a} 15$.
Effrontery, see Impudence.

Eggs, $P l .17^{\alpha} 3^{2} \mathrm{ff} ;$ experiment with, $24^{a} 17$.
Egypt, Pl. $21^{\mathrm{a}} 34, \mathrm{~b}^{\mathrm{b}}$; Mir. $31^{\mathrm{a}} 11$, $45^{\mathrm{a}} \mathrm{II}$.
Egyptians, Ph. $5^{\mathrm{a}} 27$, $12^{\mathrm{a}} 12$; E. trees, $19^{\text {a }} 12$.
Elaitic Gulf, Vent. 73^{a} IO.
Elba, colour of pebbles in, Mir. $39^{\text {b }}$ 23-28.
Elbow, Ph。 $13^{\text {a }}$ Io.
Elements, Col. colours of, $91^{2}{ }^{\text {1 }} 1-92^{2}$ 3 ; transmutation of, 91^{a} 10; Lin. corporeal e., $69^{\text {a }} 21$; e. of things defined, $72^{2} 9,10$; are indivisible, $68^{a} 16$; nothing is prior to the e., $68^{a} 15$; points as e. of bodies, 72^{a} 10, $11 ; M X G .75^{\mathrm{b}}$ 12, 15; Democritus's view of, $75^{\text {b }} 28$, 29; are eternal, $75^{\text {b }} 5$.
Elephants, period of gestation in, Mir. $47^{\text {b }} 5$.
Eleusis, Mir. $43^{\text {b }} 2$.
Elis, Eleans, Mir. $34^{\mathrm{a}} 21,{ }^{\mathrm{b}} 26,42^{\text {a }}$ 25.

Elk, Mir, $32^{\text {b }} 9$ (note).
Elm, Pl. $28^{\mathrm{b}} 24$.
Emathiotae, Mir. $35^{\text {a }} 34$.
Embryo, $P l .17^{a} 31$,
Emotion and quality of voice, Aud. $2^{\mathrm{a}} 3,4^{\mathrm{b}} 3^{8}$.
Emotions, expression of, $P h .5^{\text {a }} 6$, $27-31,{ }^{\text {b }} 3-9,28-3 \mathrm{I}, 36,8^{\mathrm{b}}$ 1 5-20, $9^{\text {a }} 10,11^{\mathrm{b}} 3,12^{\mathrm{a}} 4,17,27,31,{ }^{\mathrm{b}} 10$, $13^{\mathrm{a}} 34$; see also Facial expression.
Empedocles, Pl. $15^{\mathrm{a}} 16,{ }^{\mathrm{b}} 16,17^{\mathrm{a}} 1$, 10; Lin. $72^{\mathrm{b}} 29$; MXG. $75^{\mathrm{a}} 39$, quoted, $75^{\text {b }} 1-3,7-8$, 10-11, $76^{\text {a }}$ 33-37, b24-27.
Enna, Mir. $36^{\text {b }}$ I3.
Enterprise, Ph. I $3^{\text {a }} 7$.
Envy, Ph. $7^{a} 7$.
Epeus, Mir. $40^{\text {a }} 29$.
Epilepsy, cured by honey from boxtree, Mir. $3 \mathrm{I}^{\text {b }} 25$, by lizard's skin, $35^{a} 29$, by rennet from sea-calf, $35^{b} 32$.
Equal, the, is the mean between the greater and the less, Mech. $47^{\text {b }} 27$.
Equilateral triangle, $\operatorname{Lin} .70^{\text {a }} 9$, 10 .
Equilibrium, caused by a right angle, Mech. $57^{\mathrm{b}} 25$; in the balance, $54^{\text {b }} 14$.
Eridanus (River), Mir. $36^{a} 30$.
Erotic passion, Ph. $5^{\mathrm{a}} 30,8^{\mathrm{a}} 36,{ }^{\mathrm{b}} 36$.
Erythe, Mir. $43^{\text {b }} 3$ I.

Erytheia, Mir. $43^{\text {b }} 28,44^{\text {a }} 3$, 5.
Erythrae, Mir. $38^{\text {a }} 8$.
Erythus, Mir. $43^{\text {b }} 30,44^{\text {a }} 2$ 。
Eternal, if anything exists, it is e. $M X G \cdot 74^{\mathrm{a}} 2,75^{\mathrm{a}} 35,76^{\mathrm{a}} 21$, denied, $76^{\mathrm{b}} 35$; the elements are e., $75^{\mathrm{b}} 5$; God is e., $77^{\mathrm{a}} 23, \mathrm{~b}_{2}$; if all things come to be, how can they be e.? $75^{\text {a }} 33$; some existents are e., $75^{\mathrm{a}} 38,39,{ }^{\text {b }} 4$.
Ethiopians, $P h$. $12^{\mathrm{a}}{ }^{1} 3,{ }^{\mathrm{b}} 3 \mathrm{I} ; P l$. $20^{2} 5$.
Etna (Mt.), Mir. $33^{\text {a }} 17,40^{\text {a }} 4,46^{\text {b }}$ 9.

Etruria, Etruscans, Mir. $37^{\text {b }}$ 26$3^{88} 4$.
Etrurian Sea, Mir. $39^{\text {b }} 21,43^{\text {a }} 3$.
Euboea, Mir. $46^{\text {b }} 36$; Vent. $73^{\text {a }} 21$, 22, b21.
Eudoxus, Mir. $47^{\text {a }} 6$.
Eunuch, Aud. $3^{\mathrm{b}} 20$.
Euphrates, Mir. $45^{\text {b }}$ Io.
Euronotus (SSE. wind), Vent. $73^{\text {b }}$ 6.

Eurus (SE. wind), Vent. $73^{\text {b }} 2,7$.
Excrement, Pl. $17^{\text {b }}$ I9; Mir. $30^{\text {a }}$ $18-25,31^{a} 7,35^{a}$ I $6,41^{b} .7$.
Existents, coming into being out of non-existents, $M X G .75^{2} 8$; some e. are eternal, $75^{\text {a }} 38,39,{ }^{\text {b }} 4$; may be limited in relation to one another, $76^{\text {a }} 3,20,21$; see also Being.
Extremities of the body, Ph. $6^{\mathrm{b}} 24$, 33, $7^{\text {a }} 32,{ }^{\text {b }} 8,8$ 32 ; see also Foot, Hand.
Eyebrows, Col. $988^{\mathrm{a}} 31$; Ph. $9^{\mathrm{b}} 20$, $12^{\text {b }} 25-27$.
Eyelashes, Col. $98^{\text {a }} 31$; copper stimulates growth of, Mir. $34^{\text {b }} 29$.
Eyelids, Ph. $7^{\text {b }} 29,11^{\text {b }} 13-18$, $13^{\text {a }}$ 22, 25.
Eyes, colour of, black, $P h .7^{\text {b }} 36,12^{\text {b }}$ 1, chestnut, $12^{\mathrm{b}} 3$, fiery, $12^{\mathrm{b}} 7$, grey, $12^{\mathrm{b}} 4$, mottled, $12^{\mathrm{b}} 10$, pale, $7^{\mathrm{b}} 23,10^{\text {a }} \mathrm{I}, 12^{\mathrm{b}} 8$, red, $12^{\mathrm{a}} 35$, white, $10^{\text {a }} 1,12^{\text {b }} 5$; bright, $7^{\text {b }} 29$, $8^{\mathrm{a}} 34{ }^{\text {b }}{ }^{\mathrm{b}}$; gleaming, $7^{\mathrm{b}} 1,19,9^{\mathrm{b}}$ $19,12^{\text {b }} 5$; dull, $7^{\text {b }} 35$; weak, $7^{\text {b }}$ $7,8^{a} 9,12$; movements of, $7^{b} 7$, 1 $3^{a} 19-30$; also referred to, $8^{a} 3$, $16,28,30,9^{\text {b }} 39,12^{\text {a }} 35^{-b} 12$, $14^{b} 4$.
Eyesight, defects of, cured by copper, Mir. $34^{\text {b }} 30$, by gold-solder, $34^{\text {b }} 32$, by sarissa, $47^{\mathrm{a}} 2$; see also Sight, Vision.

Face, $P h .7^{\mathrm{b}} \mathrm{I}_{5}, 25,33,8^{\mathrm{a}} 4,8,16$, $17,28,30,9^{\text {b }} 5,16,39,11^{\mathrm{b}} 5^{-1}$, $12^{\mathrm{a}} 3 \mathrm{I}, 14^{\mathrm{b}} 4$.
Facial expression, $P h .5^{\mathrm{a}} 28-\mathrm{b}$, 10 , $6^{\mathrm{a}} 29,{ }^{\mathrm{b}} 28,35,7^{\mathrm{b}} 11,27,8^{\mathrm{a}} 6,{ }^{\mathrm{b}} 15-$ $17,11^{b} 2,5-12^{\mathrm{a}} 5,27-36,{ }^{\mathrm{b}}{ }^{10}, 26$, $13^{a} 21$.
Falconry, Mir, $41^{\text {b }}$ 15-27.
Falsehood and truth in cognition, $M X G .80^{2} 10 \mathrm{ff}$.
Fat, why it floats on water, $P l_{0} 23^{\text {a }}$ 3I ff.
Fatigue, $P h .9^{\text {a }}$ Io.
Fear, or terror, $P h \cdot 5^{\mathrm{a}} 7,30,9^{\mathrm{a}} 10$, $12^{\mathrm{a}} \mathbf{1 8},{ }^{\mathrm{b}} \mathrm{IO}$; see also Cowardice.
Feathers, see Plumage.
Female, $P h$. sex, character of, $6^{\text {b }}$ $32-34,9^{\text {a }} 30^{-{ }^{-b}}{ }^{1} 4,{ }^{\text {b }} 36-10^{\mathrm{a}} 8,19,28$, $37,{ }^{\text {b }} 11,14,28,37,11^{a} 13,14^{\text {a }}$ I, 9; see also Women; Pl. palm, $21^{\text {a }} 15 \mathrm{ff}$; plants, their characteristics, $17^{\mathrm{a}} 8,2 \mathrm{I}^{\mathrm{b}} 22 \mathrm{ff}$; see also Sex.
Fennel, Aud. $3^{\mathrm{a}} 4 \mathrm{I}$.
Fermentation, Mir. $32^{\text {a }} 10$.
Ferocity, $P \hbar .7^{\mathrm{a}} 14,8^{\mathrm{a}} 20,11^{\mathrm{a}} 14$, ${ }^{\mathrm{b}} 2$.
Fertilization, of barren trees, $P l$. $21^{3} 12$; of palms, $21^{2} 14 \mathrm{ff}$ 。
Fibres, Pl. $18{ }^{\mathrm{a}} 6,11,20,19^{\mathrm{a}} 35$.
Field-mice, that live in water, Mir. $42^{\mathrm{b}} 7$.
Fiery colour, of skin ($\left.\epsilon \pi \iota \phi \lambda \epsilon \gamma \eta_{s}\right)$, $P h$. $12{ }^{\text {a }} 26$; of eyes ($\pi \nu \rho \omega \dot{0} \delta \eta s$), $12^{\mathrm{b}} 7$; see also Flame-colour.
Fig, fig-tree, $P l .18^{\mathrm{b}} 35,19^{\mathrm{b}} 5,20^{\mathrm{a}} 34$, ${ }^{\mathrm{b}} 38,2 \mathrm{I}^{\mathrm{a}} 24,25,{ }^{\mathrm{b}} 15$.
File, Aud. $2^{\mathrm{a}} 38,3^{\mathrm{a}} \mathrm{a}^{2}$, ${ }^{\mathrm{b}}$ IO.
Finger-rings, $A u d . \mathbf{I}^{b} 4$.
Finite, $\operatorname{Lin} .68^{\mathrm{a}} 6,7,20,23,{ }^{\text {b }}$ I, 3, $69^{\mathrm{a}} 7,9,11,13,16,27,7 \mathrm{o}^{\mathrm{b}} 13$.
Fins, fishes that walk on, Mir. $35^{\text {b }} 10$.
Fire, Col. colour of, $9^{a} 3,{ }^{b} 7-17$; $P l$. element of, in plants, $22^{\text {a }} 14$, $28^{\mathrm{a}} 26$; in brimstone, $26^{\mathrm{a}} 5$; Mir. modes of kindling, $32^{\mathrm{b}} 26-30$; ominous, $42^{\text {a }} 18-24$; volcanic, $33^{\mathrm{a}} \mathrm{I}-23,40^{\mathrm{a}} \mathrm{I}-5,20-23,42^{\mathrm{b}} 20-$ $25 ; \operatorname{Lin}$ as an element, $68^{\text {a }} 16$; $M X G .75^{\text {b }} 12$; an eternal element, $75^{\text {b }} 5$; the universal element, $76^{\mathrm{b}} \mathrm{I}$.
Firelight in colour-blends, $\mathrm{Col} .92^{\text {a }}$ $10,{ }^{b} 23,93^{b} 19$.
Fire-mixture, Mir. $32^{\text {b }} 27$.
Fire-proof stone, Mir. $33^{\mathrm{b}} 27$.
Fire-stone, Mir. $32^{\text {b }} 29,33^{\text {a }} 23-27$.

INDEX

Fish, amphibious kinds of, Mir. $35^{\text {b }} 5-14$; can live in mud, $35^{\text {b }} 8$, 15-26; engendered by the earth, $35^{\mathrm{b}} 26$; insensible to pain, $35^{\mathrm{a}} 20$; taken with tridents, $37^{\text {b }} 15$.
Flame-colour ($\phi \lambda$ oуoє $\delta \dot{\eta} s$), a lustrous crimson, Col. $92^{\mathrm{a}} 29$; of skin, Ph. $12^{\text {a }} 23$; see also Fiery colour.
Flanks, Ph. $1^{2}{ }^{1} 15$.
Flattery, Ph. $11^{\mathrm{b}} 36$, 13^{a} 16.
Flavours, Col. $96^{\mathrm{b}} 2 \mathrm{I}$.
Flax, Pl. $31^{\text {a }} 32$.
Flesh, physiognomic significance of condition of, Ph. 6a $32,{ }^{\mathrm{b}} 22-24$, $7^{\text {b }} 12,8^{\mathrm{a}} 25, \mathrm{~b} 8,10,9^{\mathrm{b}} 12,13^{\mathrm{b}} 12-$ 26 ; of plants, $P l .18^{\mathrm{a}} 6,19^{\mathrm{a}} 36$.
Fleshiness, Col. $98^{\text {b }}$ I .
Fleshy substance, Pl. 18a $33,20^{8} 37$ ff., ${ }^{b}$ G.
Flowers, Col. as dyes, $94^{\text {a }} 17$; colours of, $94^{\mathrm{b}} 13,96^{\mathrm{b}} 6-97^{\mathrm{a}}{ }^{13} ;$; $P l$. $18^{\mathrm{a}} 15,{ }^{\mathrm{b}} 9,19^{\mathrm{a}} 38,25^{\mathrm{a}} 19,20,28^{\mathrm{a}}$ 18; absent in some plants, $28^{\mathbf{b}} 37$; aromatic, $20^{\text {b }} 27$; colours of, $20^{\text {b }}$ 17 ff., $28^{\text {b }} 34-39$; composition of, $28^{\mathrm{b}} 30$; of olives, $27^{\mathrm{b}} 3$; produced before fruit, $28^{\mathrm{b}} 32$.
Flower-honey, Mir. $31^{\mathrm{b}} 18$.
Foam, as a dye, Col. $94^{\text {a }} 20 ; P l$. 23^{b} I3, 15.
Folly, Ph. $11^{\text {a }} 25$.
Foot, $P h .9^{b} 9,10^{\mathrm{a}} 15-24,13^{\mathrm{a}} 14$, $14^{\text {b }} 6$; see also Extremities.
Footprints, of Heracles, Mir. $38^{\text {a }} 33$.
Fop, Ph. $13^{\text {a }}$ 22-26.
Forehead, $P h .7^{\mathrm{b}} 2,12,8^{\mathrm{a}} 2,9^{\mathrm{b}} 20$, $10^{a} 1,11^{b} 28-12^{a} 5,{ }^{b} 34,14^{b} 4$.
Forepart of an object travels fastest, Mech. $51^{2} 7$-10 (and note).
Form, no change of, in the One, $M X G .74^{\text {a }} 20$; one f. may constitute the All, $75^{\mathrm{b}} 22$.
Fox, Ph. $12^{\text {a }} 17$; tale of a, Mir. $38^{\mathrm{b}} 3-11$.
Frame, of a bed, Mech. $56^{\text {b }} 6$.
Frankincense, $P l .18^{a} 5$.
Freezing, does not alter volume of honey, Mir. $31^{\text {b }} 31$; melts Celtic tin, $34^{\text {a }} 9-\mathrm{II}$.
Friction, Mech. $52^{\text {a }} 8,32,33$.
Frogs, Aud. o ${ }^{\text {a }} 26$; Ph. $10^{\text {b }} 16$; f. silent in Cyrene, Mir. $35^{\text {a }} 33$, in Seriphos, $35^{\text {b }} 3$; sea-f., $35^{\text {b }}$ I3.
Fruit, Col. as dyes, $94^{\text {a }} 19$; colours of, $94^{b} 20,95^{\mathrm{a}} 26-97^{\mathrm{a}} 14,98^{\mathrm{b}} 5$, $99^{2} 9^{-14}$; flavours of, $96^{b} 20$;

Pl. 18a $16,{ }^{\mathrm{b}} 9,19^{\mathrm{a}} 39,{ }^{\mathrm{b}} 36 \mathrm{ff}$, $21^{\text {b }} 13,16,24,26^{\text {b }} 4,29^{\text {a }} 28$; absent in some plants, $19^{\text {b }} 31$; are leaves really fruit? $27^{\text {a }} 30 \mathrm{ff}$; ; causingsleep, $22^{a} 7$; composition of, 18^{a} 3 Iff ; colour of, $20^{\mathrm{b}} 17 \mathrm{ff}$.; edible and inedible, $20^{\mathrm{b}} 3 \mathrm{ff}$., $26^{\mathrm{a}} 13 \mathrm{ff}$; effect of locality on, $20^{\text {a }} 13$; effect on bowels, $22^{\text {a }} 7$; flavour in, causes of, $29^{\text {a }} 36$; juices in, $20^{\text {a }} 29 \mathrm{ff}$; period of productiveness, $28^{\text {b }} 4$ ff.; poisonous, $22^{\text {a }} 7$; produced after flowers, $28^{\text {b }} 32$, before or after leaves, $27^{3} 8 \mathrm{ff}$, $28^{\mathrm{b}} 33$; position in plant, $19^{\mathrm{a}} 9 \mathrm{ff}$; wild, $20^{\text {b }} 14,23$.
Fulcrum, Mech. $50^{\mathrm{a}} 35,38 \mathrm{~b}^{\mathrm{b}} 2,6,7$, II, $14,16,33,39,51^{\text {b }} \mathrm{I}, 4,5$, $53^{\mathrm{a}} 10,11,13,15,18,22,29$, $54^{\mathrm{a}} 10,13,23,28,{ }^{\mathrm{b}} \mathrm{I}, 8,10,12$, $57^{\mathrm{b}} 13,18$.
Fungi, $P l .19^{\mathrm{a}} 31,25^{\mathrm{b}} 17$.
Fur, Pl. $18^{\text {b }} 25$.
Furnace, for iron-smelting, Mir. $33^{\text {b }} 25-31$.
Fusion, Aud. $3^{\text {b }} 35-4^{\text {a }} 8$.

Gades, Mir. $44^{\mathrm{a}} 24$.
Gait, $P h .7^{\text {b }} 34,8^{\text {a }} 6,14,9^{\text {b }} 3$ I, $13^{\text {a }}$ 3-20.
Gaius, Mir. $36^{\mathrm{a}} 5$.
Gamblers, Ph. 8a 3 I.
Garden, plants, $P l .19^{\mathrm{b}} 28,2 \mathrm{I}^{\mathrm{b}} \mathrm{I}$, 21 ; trees, $19^{\text {b }} 36,21^{\text {a }} 1,24$.
Gargaria, Mir. $40^{2} 27$.
Geloni, Mir. $32^{b} 7$.
Generation and decay balancing one another, $M X G .75^{\text {b }} 34$.
Generosity, Ph. $9^{\text {b }} 34$.
Genital organs, Mir. $31^{\text {² }} 26$; of marten, $31^{\mathrm{b}^{\mathrm{b}}} \mathrm{I}$.
Gentleness, Ph. 8a 24-27, $9^{\text {b }} 35$, $1 I^{\mathrm{b}} 28,13^{\mathrm{b}} 4$.
Genus)(species, $P l$. $1^{\text {a }} 13$ ff.
Germans, Mir. $46^{\text {b }} 30$.
Geryon, Mir. $43^{\text {b }} 28$.
Gestation, Mir. $47^{\text {b }} 5$.
Gesture, of body, Ph. $6^{\mathrm{a}} 29,{ }^{\mathrm{b}} 28,37$, $7^{\mathrm{a}} 32,{ }^{\mathrm{b}} 5,10,27,31,8^{\mathrm{a}} 6,11,20$, 26 ; of limbs, $8^{a^{a}} 14,13^{a} 10$.
Geyser, Mir. $34^{\text {b }} 8-11$.
Giants, Heracles and the, Mir. $3^{8^{a}} 29$.
Gills, of fish, Mir. $35^{\text {b }} 14$.
Glass, Col. $94^{a} 5$; Pl. $23^{\text {a }} 18$.
Gluttony, Ph. $8^{\mathrm{b}} 2-4,10^{\mathrm{b}} 17-20$.

Goats, Col. $98^{\mathrm{b}} 20 ; P h .12^{\mathrm{b}} 7,14$, $13^{\text {b }} 6$; tales of g., Mir. $30^{\text {b }} 20$, $31^{\text {a }} 19,42^{\text {b }} 29,44^{b} 2-5$.
Goatberry, $P l .19^{\text {b }} 21$.
God, $M X G$. $77^{a} 15$; is eternal, $77^{\mathrm{a}} 23,{ }^{\mathrm{b}} 2,19$; neither limited nor unlimited, $77^{\text {b }} 3,20$, criticized, $78^{\mathrm{a}} 16^{-\mathrm{b}} 14$; neither in motion nor at rest, $77^{\mathrm{b}} 8-20$; why should not G. move into something else or his parts revolve? $79^{\mathrm{a}} 3$; if G. is a body, there is no reason why he should not move, $79^{\mathrm{a}} 8,9$; is One, $77^{\mathrm{a}} 24$, $34-36,{ }^{\mathrm{b}} 2,9,19,78^{\mathrm{b}} 7,8$, meaning of the One as applied to G., $79^{\mathrm{a}} \mathrm{Iff}$; is similar and sees and hears in every part, $77^{\mathrm{a}} 37-39$, ${ }^{\mathrm{b}}$ I, $19,78^{\mathrm{a}} 12-13$, criticized, 78^{a} $3-7$; is spherical, $77^{\mathrm{b}} \mathrm{I}-3,19$, criticized, $78^{a} 7-15$, cannot be spherical, if incorporeal, $79^{\mathrm{a}} 7$; supremacy of, $77^{\mathrm{a}} 24-33,78^{\mathrm{a}} 9$, 13, criticized, $77^{\text {b }} 27-78^{\text {a }} 4$; no more ungenerated than anything else, $77^{\text {b }} 24$.
Gold, Col. $93^{\text {a }} 18$; Mir. alluvial, $33^{\text {b }} 14-17$; and gold-solder, $34^{\text {b }}$ 21 ; eaten by mice, $32^{\text {a }} 24$; for= bidden in Balearic Isles, $37^{\text {b }} 3$; found in nuggets in Bactria and Paeonia, $33^{\text {b }} 6-14$; grows at Philippi, $33^{\mathrm{a}} 30$, and in Pieria, 33^{b} 18-21; coin, Pl. $23^{\mathrm{a}} 21,24$.
Golden, bull of Artemis, Mir. $47^{\text {b }}$ I; colour, Col. $93^{\text {a }} 13,26$.
Gold-solder, Mir. $34^{\text {b }} 20$.
Good moral character, Ph. $7^{\text {b }} 33^{-}$ $8^{\mathrm{a}} \mathrm{a}^{\text {, b }} \mathrm{I}$.
Good natural parts, $P h .6^{6} 5,23$, $7^{b} 12,8^{\mathrm{a}} 37,10^{\mathrm{b}} 34,11^{\mathrm{b}} 21$.
Good spirits, or cheerfulness, $P h$. $5^{b} 7,8^{\text {a }} 2-7$.
Goose, Aud. o ${ }^{\mathrm{b}} 23$.
Gorgias, his views stated, $M X G$. $79^{\text {a }} 11-33$, criticized, $79^{\text {a }} 34^{-80^{b}}$ 21.

Grafting, Pl. $20^{\text {b }} 34 \mathrm{ff}$.
Grapes, Pl. $20^{\mathrm{a}} 30$; colour of, Col. $92^{\mathrm{b}} 8,95^{\mathrm{b}} 25,96^{\mathrm{b}} 28$.
Grass, Mir. $32^{\mathrm{a}} \mathrm{I}, 42^{\mathrm{b}} 23$.
Grasshopper, Aud.4 $4^{\text {a }} 3$; Mir. $35^{\text {a }} 24$. Grease, Aud. $2^{\text {b }} 22$.
'Great', as a predicate, Lin, $68^{\text {a }} 3$, $5,69^{a} 5,6$, II ; 'greater', as a predicate, $72^{b}{ }^{12}$.
Greece, Greeks, Mir. $32^{\mathrm{a}}{ }^{11}, 36^{\mathrm{a}} \mathrm{II}_{\text {, }}$
b $6,37^{\mathrm{a}} 9,39^{\mathrm{b}} 24,40^{\mathrm{b}} 5,27,42^{\mathrm{a}} 28$, $43^{\text {b }} 11,45^{b}$ I 5 .
Greek architecture in Sardinia, Mir. $3^{88^{b}} 13$.
Green, bright, Mir. $46^{\text {b }} 13$ (χ^{λ} oá$\zeta \omega \nu$) ; pale, $34^{\text {a }} 14$ ($\chi \lambda \omega$ مós); see Herb-green, Leek-green, Yellowgreen.
Greenness in plants, $P l .20^{\mathrm{b}} 19$, $27^{\mathrm{b}} 18 \mathrm{ff}$, $29^{\mathrm{a}} 25$.
Grey, Col. a mixture of black and white (ϕ atós), $92^{\mathrm{a}} 8,95^{\mathrm{a}} 33,97^{\mathrm{b}} \mathrm{I}$, 7 ; greyness of hair ($\pi 0 \lambda i \omega \sigma t s$), 98^{a} I3, 22, b 14,25 ; eyes ($\gamma \lambda$ avkós), $P h .12^{\mathrm{b}} 4$; origin of g . in plants, $P h .28^{\text {b }} 15 \mathrm{ff}$; see also Blue-grey.
Grief, Ph. $8^{b} 15$.
Grin, Ph. $8^{\text {a }}{ }_{17}$.
Groin, Ph. $8^{\text {a }} 23$.
Grubs, Mir. $3 \mathrm{I}^{\mathrm{b}} 7,9$.
Gudgeon, Mir. $35^{\text {b }}$ I 4 .
Gum, Mir. $36^{\mathrm{b}} 5,44^{\mathrm{a}} 14$; Pl. 21^{b} 40, $29^{a} 15-23$; g.-arabic, $18^{a} 5$.
Gut, Aud. $2^{\text {b }}{ }^{17}$.
Gyaros, Mir. $32^{\text {a }} 22$.
Gymnesiae (Balearic Isles), Mir. $37^{2} 30$.
Hair, conditions of colour in, Col . $94^{\text {a }} 23,{ }^{\text {b }} 12,97^{\text {a }} 33-99^{\text {b }} 19$; as a physiognomic sign, $P h .6^{\mathrm{a}} 30,{ }^{\mathrm{b}} 6-$ $21,7^{\mathrm{a}} 3 \mathrm{I},{ }^{\mathrm{b}} 4,18,8^{\mathrm{a}} 19,23,26$, $9^{b} 22,24,12^{b} 14^{-1} 3^{\mathrm{a}} 2$; human, Pl. $18^{\mathrm{b}} 14$; of animals, $18^{\mathrm{b}} 14$; of elk, changes colour, Mir. $32^{\text {b }} 7$-I 6 .
Half-way point in a line, Lin. $68^{\text {a }}$ I9.
Hallucination, instance of, Mir. $32^{b} 17-21$.
Hand, Aud. o ${ }^{\text {b }} 8 ; P h .7^{\text {b }} 9,8^{\text {a }} 14$, $13^{\text {a }} 10$; joints in, $\operatorname{Lin} .72^{\text {b }} 32$; see also Extremities.
Hanno's 'Circumnavigation', Mir. $33^{\text {a }}$ II。
Hardness of heart, Ph. $8^{\mathrm{b}} 2$.
Hare, Col. $98^{\mathrm{a}} 25,26 ;$ Ph. $5^{\mathrm{b}} 26,6^{\mathrm{b}} 8$, $7^{\mathrm{a} 21}$; Mir. $36^{\text {b }} 19$; with twolivers, $42^{\text {a }} 16$.
Harmony, or symphony, Aud. Ib $20,4^{2} 2$.
Hastiness, $P h .12^{\mathrm{a}} 21,13^{\mathrm{b}} 7$.
Haunches, see Hips.
Haunted tomb, Mir. $38^{\text {b }} 30-39^{\text {a }}$ II.
Hawk, Ph. $13^{\mathrm{a}} 20$; used in hunting, Mir. $41^{\text {b }}{ }^{15}$ 5-27.
Hawkweed, antidote for arrow-poison, Mir. $37^{2} 20 n$.

INDEX

Haziness, Col. $94^{\text {a }} 2,95^{\text {b }} 19$.
Head, $P h .8^{\text {a }} 13,9^{\text {b }} 5,24,12^{\text {a }} 6-9$, $14^{3} 4$.
Healing fountain, at Scotussae, Mir. $41^{\text {b }} 9-14$.
Hearing, sense of, Aud. $1^{\text {a }} 2$ 1-40, ${ }^{\mathrm{b}} 15-22,25-30,2^{\mathrm{a}} 12, \mathrm{~b}_{30}, 3^{\mathrm{b}} 5$, $2-37,40-4^{\mathrm{a}} 8 ; M X G .80^{\mathrm{b}} 5,15$, in God, $77^{\mathrm{a}} 36,78^{\mathrm{a}} 4,9$, 13 ; does not recognize colours, $80^{b} 6$; objects of, exist because they are cognized, $80^{2} 13$.
Heart, the seat of intelligence, $P h$. $13^{b} 9, n$.
Heat, necessary in dyeing, Col. $94^{\mathrm{a}} 26,95^{\mathrm{b}} 16,97^{\mathrm{a}} 7$; in maturation, $i b .95^{\mathrm{a}} 24-28,95^{\mathrm{b}} 8,98^{\mathrm{b}} 15$, 23-27; sensation of, Aud. $2^{\text {a }} 13$; h. and cold in the body, proportions of, $P h .9^{a} 7,13^{\mathrm{b}} 6-35$; stimulates sense of pain, Mir. $35^{\text {a }}$ 17-21.
Heavenly bodies, Pl. $16^{\mathrm{a}} 24$.
Hecate, mysteries of, Mir. $47^{\text {a }} 6$.
Hedgehog, habits of, Mir. $31^{\text {a }} 15$, $32^{b} 3,35^{2} 26$.
Heilenia, meaning of, Mir. $40^{\text {B }} 27$ 35.

Helice, Mir. $30^{\text {b }} 1$ I.
Hellas, Hellenes, see Greece, Greeks.
Hellespont, Mir. $39^{\text {b }} 3,6$; Vent. $73^{a} 23$.
Hellespontias (E. wind), Vent. $73^{\text {a }}$ 21.

Heneti, Mir. $41^{\mathrm{b}} 28-42^{\mathrm{a}} 4$.
Hens, lay well in Illyria, Mir. $42^{\text {b }} 3$ I.
Hera, Mir. $3^{8^{a}} 17,24$.
Heraclea, in Italy, Mir. $40^{\text {a }} 12$; in Pontus, $35^{\text {b }}$ I 5 .
Heracles, fables about, Mir. $34^{\text {a }}$ 16, ${ }^{\mathrm{b}} 26,37^{\mathrm{b}} 6,38^{\mathrm{a}} 28 \mathrm{~b}^{\mathrm{b}} 2,18,20,40^{\mathrm{a}}$ 17, $43^{\text {b }} 27$; pillars of, $33^{\text {a }} 10,36^{\text {b }}$ $30,44^{\mathrm{a}} 25$; road of, $37^{\mathrm{a}} 7$ - 11 ; sons of, $38^{\text {b }} 16$.
Herb-green, Col. $93^{\text {b }} 24,94^{\text {b }} 20,24^{-}$ $29,95^{a} 1,17,31,96^{a} 1,14,16,{ }^{b} 6$, $97^{\mathrm{a}} 24,99^{\mathrm{a}} 12$ 。
Herbs, Pl. $19^{\mathrm{b}} 18,21^{\mathrm{b}} 28,28^{\mathrm{b}} 15$; defined, $19^{\mathrm{b}} 11$.
Hercynian wood, Mir. $39^{\text {b }} 9$.
Hermes, promontory of, Mir. $44^{\text {a }} 7$.
Hesaenus (mountain), Mir. $30^{2} 5$.
Hesiod, MXG. $75^{\mathrm{a}} 11,76^{\mathrm{b}} 16$.
Hibernation, Pl. $18^{\mathrm{b}} 25$; Mir. 35^{a} I 5-33, $45^{\text {a }}$ I4.
Hip-joint, $P h .7^{\text {b }} 2$ I.
Hippos, promontory of, Mir. $44^{\text {a }} 8$.

Hips, Ph. $7^{\text {a }} 37,9^{\text {b }} 7,29,10^{\mathrm{a}} 4$.
History of Sicily, by Polycritus, Mir. $40^{\text {b }} 32$.
Holm-oak, Pl. $2 \mathbf{1 1}^{\mathrm{b}} 20$.
Homer, Mir. $39^{\text {b }} 33,40^{\text {b }} 15$.
Homicide, Mir. $32^{2} 17$; homicidal mania, $46^{\mathrm{b}} 28$.
Homogeneous, see Similar.
Honey, tales about, Mir. $3^{1}{ }^{\text {b }} 18$ $32^{2 \mathrm{a}} 13$; h.-balls, $31^{\mathrm{b}} 28$; h.-comb, $31^{\text {b }} 21,32^{\mathrm{a}} 6$; h.-pale, Ph. $12^{\mathrm{a}} 19$.
Hoofs, Col. $97^{\text {b }} 19$; swine with solid, Mir. $35^{a} 35$.
Horizontal, Mech. 5^{2} 27, 28, 34 .
Horn, The (in India), Mir. $35^{\text {b }} 5$.
Horns, colour of, Col. $97^{\text {b }} 20$; as musical instruments, $A u d .1^{\text {b }} 9$, $3^{a} 33,4^{a} 38$, their selection and preparation, $2^{\mathrm{a}}{ }^{17} 7^{\mathrm{b}} 14$; of bison, Mir. $30^{\text {a }} 12-16$; of Paeonian wild cattle, $42^{\text {b }} 34$; of stag, $30^{\text {b }} 24^{-}$ $31^{\text {a }} 3$; see also Antlers.
Horse, Col. $97^{\text {a }} 34,98^{\mathrm{a}} 6$, ${ }^{\mathrm{b}} 7$; Aud. $0^{\text {a }} 25 ; P h .5^{\mathrm{a}}{ }^{16}, 10^{\mathrm{b}} 33,13^{\mathrm{a}} 12$; Mir. $30^{\text {a }} 10,46^{\text {b }} 35$; the wooden h. of Troy, $40^{a} 30$.

Hot substance, in tin, Mir. $34^{\text {a }}$ II
Hot temper, Ph. $6^{\mathrm{b}} 3,26,8^{\mathrm{a}} 2,37$.
Hunting, love of, $P h .10^{b} 5$; bears, Mir. $45^{\text {a }} 17$; hares, $36^{\text {b }} 18$; leopards, $31^{\mathrm{a}} 4^{-10}$; lions, $45^{\text {a }} 28$ 34.

Husks, $P l .20^{\text {b }} 29$.
Hyaena, paralysing power of, Mir. $45^{\text {a }} 24^{-27}$.
Hypate, Mir. $43^{\text {b }} 16$.
Hypnotic influence of snakes, Mir. $45^{b} 23-32$.

Iapygia, Mir. $38^{\text {a }} 27-34$.
Iapyx (NW. wind), Vent. $73^{\text {b }}$ I3.
Iberia, Iberians, Mir. $33^{\text {b }}$ I5, $37^{\text {a }}$ $8^{-\mathrm{b}} 6,44^{\mathrm{a}} 4$.
I carus, an island, Mir. $36^{\text {b }} 11$; son of Daedalus, $36^{b} 9$.
Ichnussa, old name of Sardinia, Mir. $38^{\mathrm{b}}{ }^{20}$.
Ichor, Mir. $38^{\text {a }} 29$.
Idea, defined, $\operatorname{Lin} .68^{\text {a }}$ 10; of a line, $68^{a} 9,69^{a} 17,21$.
Ideal, line, $\operatorname{Lin} .69^{a} 17$, is indivisible, $68^{\text {a }} 10$; the i. square, triangle, plane, solid, 68^{a} I2, 13.
Idyreus, Vent. $73^{\text {² }} 6$.
Idyris (NNE. wind), Vent. $73^{\text {a }} 7$.
Ilissus, Mir. $34^{\text {a }} 18$.

Illiberality, or miserliness, $P h \cdot 9^{n}$ 23, $11^{\mathrm{a}} 4, \mathrm{II}^{\mathrm{b}} 12,12^{\mathrm{b}} 37$.
Illusions of depth and distance, Aud. $1^{\mathrm{a}} \mathrm{3}^{2-\mathrm{b}} \mathrm{I}$.
Illyrians, Mir. $32^{\mathrm{a}} 5,42^{\mathrm{b}} 27,44^{\mathrm{b}} 9$.
Imbecility, $P h$. $11^{\mathrm{b}^{\mathrm{b}}} 23$.
Imitation, vocal, Aud. oa 25-29 (by men of animals), 30 (of birds).
Immobility, $P h$. $12^{a} 19$; see also Obstinacy.
Impact as a cause of sound, Aud. $\mathrm{o}^{\mathrm{a}} \mathrm{I}-16,21,33,{ }^{1} 2,1^{\mathrm{a}} 8,24,{ }^{\mathrm{b}} 27$, $2^{\mathrm{a}} 10,18,{ }^{\mathrm{b}} 17,27,30,3^{\mathrm{a}} 12,35$, ${ }^{b_{1}}, 2-15,25-4^{a} 5, b_{3}, 13-15$.
Impudence, or effrontery, $P h .5^{\text {b }} 3$, $7^{\mathrm{b}} 28-33,8^{\mathrm{b}} 2,9^{\mathrm{a}} 21,10^{\mathrm{a}} 20,33$, $11^{\mathrm{a}} 35,12^{\mathrm{a}} 8, \mathrm{~b} 8,18,22$.
Incidentally, Lin. $72^{\text {a }} 18,24$.
Inclination, of a circle, Mech. $51^{\text {b }}$ $28-35,52^{a} 2,7,10$; of weights, $52^{\mathrm{a}} 28$.
Incorporeal, $M X G \cdot 79^{2} 7$.
India, Indians, Mir. $34^{\text {a }} 1$, $35^{\mathrm{a}} 6,{ }^{\mathrm{b}} 5$.
Indivisible, Lin . the elements are i., $68^{a} 16$; i. lines, $69^{a} 18,70^{a} 1$, $15,21 \mathrm{ff}$., ${ }^{4} 4$, arguments in favour of, $68^{\mathrm{a}} \mathrm{I}-2 \mathrm{I}$, answered, $68^{\mathrm{b}} 21-69^{\text {b }}$ 26, further consideration and criticisms of, $69^{\mathrm{b}} 26-70^{\mathrm{a}} 33$, various impossible consequences of the theory, 70^{b} I ff ., their existence argued from the statements of mathematicians, $68^{\text {b }} 4$, proved to conflict with mathematics, $69^{\text {b }} 29$, $70^{2} 18$; the theory of i . lines makes it impossible to construct a square on every line, $70^{\text {b }} 21-23$, makes the limit of a line a line and not a point, $70^{\text {b }} 23-28$, necessitates the existence of i . planes and solids, $70^{\text {b }} 30-7 \mathrm{I}^{\mathrm{a}} 3$, entails that part of a line is not a line, nor of a plane a plane, $71^{2} 9-10$; the i. line in a composite magnitude, $68^{\text {b }} 25$, 26 , is not between two points and has no middle, $69^{b} 33,34$, proved to be divisible, $70^{\text {a }} 26^{-\mathrm{b}} 6,12$, admits of an infinite number of divisions, $69^{2} 2$, can be bisected, $70^{\mathrm{a}} 29,{ }^{\text {b }} 4$, square on, $70^{a} 6-8$, is neither finite nor infinite, 70^{b} II-13, contains no point, $70^{\text {b }}$ 15-17, if it contains one point, it is a point ; if more, it is divisible, $70^{\mathrm{b}} 16$, if it contains points, there will be nothing between them, or a line, $70^{\text {b }} 19$, is a point in all but
name, $70^{\mathrm{b}} 28-30$, is ultimate, $70^{\text {b }}$ 25 ; i. lines are all commensurate in length, $70^{\text {a }} 3$, all lines are made up of i. lines, $70^{\mathrm{b}} 18$, three combined in a triangle, $70^{\mathrm{a}} 9 \mathrm{ff}$; the ideal line must be i., $68^{a} 11$; a point is not an i. joint, $72^{\text {b }} 25-31$; if there is a line between points in a line, the unit-line will not be i., $70^{\mathrm{b}} 20$.

Ineffectiveness, see Persistence,lack of.
Infinite, infinity, $\operatorname{Lin} .68^{2}$ 4, 21, 22, 26 , b $3,22,25,69^{\mathrm{a}} \mathrm{I}, 2,4,10,15,28$, 31, 32, $70^{\mathrm{b}} 10,11,13,72^{\mathrm{b}} 31,32$; infinity of lesser circles describable, Mech. $52^{\text {a }}$ I ; see also Unlimited.
Infra-sternal notch, $P h .10^{\text {b }} 17$.
Ink, Col. $94^{\text {a }} 20$.
Inscribed pillar at Hypate, Mir. $43^{b} 15-44^{a} 5$.
Insensibility to pain, $P h .8^{\text {b }} 37$; of fishes, Mir. $35^{\text {a }} 20$; of hibernating birds, $35^{\text {a }} 17$.
Insolence, $P h .8^{\text {b }} 35,13^{\text {a }} 31$.
Instability, $P h .6^{\text {b }} 23$; see also $P e r-$ sistence, lack of.
Intelligence, $P h$. lack of, $10^{\mathrm{b}} 32$; organ of (the heart), $13^{\text {b }} 9-33$; parts indicative of, $14^{\mathrm{b}} 3-9$; Pl.in plants, $15^{b} 17$; lacking in certain animals, $16^{a} 6$, 10 .
Intermittent, insanity, Mir. $32^{\text {b }} 21$ 25 ; springs, $34^{\text {a }} 34^{-b_{2}}, 34^{\text {b }} 4^{-11}$, $44^{\mathrm{b}} 11,47^{\mathrm{a}} 4$.
Invisible fire, Mir. $33^{\text {a }} 8$.
Iolaus, Mir. $38^{\text {b }}$ I5.
Ionians, Mir. $40^{2} 13$.
Iphicles, Mir. $38^{\text {b }}$ I5.
Irascibility, Ph. $6^{\text {b }} 31,7^{\mathrm{a}} 5,11^{\mathrm{a}} 31$, $12^{2} 26,29,36$.
Iris (plant), Col. s $6^{\text {b }} 26$.
Iron, Col. 93^{2} 19; i.-work, Aud. 3^{a} I ; alluvial in Amisus and Chalybia, Mir. $33^{\text {b }} 21-31$; eaten by mice, $32^{2} 22$; found in coppermine, $37^{\mathrm{b}} 26-32$.
'Irrational' lines, Lin. $68^{\text {b }}{ }_{18}$, 21 .
'Is' in its copulative)(existential sense, $M X G .79^{\text {a }} 35 \mathrm{ff}$.
Island of the Carthaginians, beyond the pillar of Heracles, Mir. $36^{\mathrm{b}} 30-37^{\mathrm{a}} 6$.
Ismenium, Mir. $43^{\text {b }} 21$.
Issus, Gulf of, Vent. $73^{\text {a }} 17$.
Ister, Mir. $39^{\text {b }} 9,15,46^{\text {b }} 29$

Istria, Mir. $39^{\text {a }} 34$.
Istrus, Mir. $45^{\text {b }} 8$.
Italy, Mir. $34^{\text {b }} 3,35^{\text {b }} 33,37^{\mathrm{a}} 7,38^{\mathrm{a}}$ $5,8,31,39^{\mathrm{a}} 12,26,40^{\mathrm{a}} 27,43^{\mathrm{a}} 5$, $45^{\mathrm{b}} 4$; Vent. $73^{\mathrm{b}} 19$.
Ivy, Col. 96^{b} II ; Mir. $31^{\text {a }} 2$ 。
Jackdaws, ominous, in Venetia, Mir. 41^{b} 28-42 $2^{\text {a }} 4$.
Jason, Mir. $39^{\text {b }}{ }^{13}$-20.
Jaws, Ph. $7^{\mathrm{b}} 24,9^{\mathrm{b}}$ I 7 .
Jealousy, Mir. $46^{2} 29$.
Joint, joints, in plants, Pl. $20^{2} 19$; in the body and hand, Lin. $72^{\text {b }}$ 31 ; nature of a j., $72^{\text {b }} 26,27,29$; no j . in stones, $72^{\text {b }} 33$; a point is not an indivisible joint, $72^{\circ} 25^{-}$ 33 ; if a point were a j. a line and a plane would also be j., $72^{\text {b }} 28$.
Jowl, Ph. $12^{2} 33$.
Joy, Ph. $8^{\mathrm{b}} \mathrm{I} 5$.
Juice, in fruits, Pl. $20^{\text {a }} 29 \mathrm{ff}$. ; in plants, $2 \mathrm{I}^{\mathrm{b}} 40$; milky, $29^{\mathrm{a}} 4 \mathrm{ff}$.; oily, $27^{\text {a }} 13 \mathrm{ff}$., $29^{\mathrm{a}} 5 \mathrm{ff}$.
Justice, or uprightness, Ph. $9^{2} 28$, ${ }^{\mathrm{b}} 13,35,14^{\mathrm{a}} 2,8$.

Kitchens, Mir. $33^{\text {a }} 3$.
Kites, wise, in Elis, Mir. $42^{\text {a }} 35$.
Knee, wood broken across, Mech. $52^{\text {b }} 22-28$.
Knock-knees, $P h .8^{\mathrm{a}}$ 13, $9^{\mathrm{b}} 8,10^{\mathrm{a}} 34$.
Knot, in wood, Pl. 19 ${ }^{\text {a }} 14$; Mech. $49^{\text {b }} 38$.
Knowledge, Ph. $6^{\text {a }}$ 15-18.
Lacedaemon, Mir. $32^{\text {a }} 18$.
Lacinium, Mir. $38^{\text {a }} 17$.
Lacrimosity, Ph. $8^{2} 35$.
Laertidae, Mir. $40^{a} 7$.
Lakes, marvellous, Mir. $34^{\text {a }}$ 3I-34, $36^{\mathrm{a}} 30-34, \quad 37^{\mathrm{b}} 8-15, \quad 39^{\mathrm{a}} 12-15$, $40^{b} 32-4 \mathrm{I}^{2} 9$.
Lampsacus, Mir. $42^{\text {b }} 8$.
Lance, Mir. $47^{\text {a }}$ I.
Lasciviousness, $P h .8^{\mathrm{b}} 5,1 \mathrm{I}^{\mathrm{b}} \mathrm{I}, 12{ }^{\mathrm{b}}$ II, 13 .
Laughter, ghostly, Mir. $39^{\text {a }}$ I.
Lava-stream, Mir. $33^{\text {a }}$ 17, 21, $40^{\text {a }}$ 5 ; spares the pious, $46^{a} 9-16$.
Laziness, or placidity, Ph. $7^{\text {a }} 16$, $11^{a} 28, b_{5}$.
Lead, Mir. $34^{\text {a }} 8,35^{\text {a }} 7$; used to weight balance, Mech. $49^{\text {b }} 36$; to weight 'swipe', $57^{\text {a }} 35,{ }^{\text {b }} 4,6$; white 1., $M X G .78^{\text {a }} 10,15$.
Leaves, Col. as dyes, $94^{\text {a }} 19$; colours
of, $97^{\text {a }} 15-30,99^{\text {a }} 11 ; P l .18^{\text {a }} 15$, $29,30,{ }^{\mathrm{b}} 9,19^{\mathrm{a}} 38,40,{ }^{\mathrm{b}} 12,2 \mathrm{I}^{\mathrm{b}} 25$, $25^{\mathrm{a}} 16,19,20, \mathrm{~b} 8,26^{\mathrm{b}} 28$; are 1 . really fruit? $27^{\mathrm{a}} 30 \mathrm{ff}$; cleft, 20^{a} I5; grey, $28^{\text {b }} 2$; of palms, $21^{\text {a }} 14$; position of, in plant, $19^{2} 9,10$; produced before or after fruit, 27^{3} 8 ff ; rough, $20^{2} 15$; shedding of, $18^{b} 27,19^{b} 34,28^{a} 32 \mathrm{ff}$. ; smooth, $20^{a} 16$.
Leek-green, Col. $95^{\text {a }} 3,9,99^{\text {b }} 4$.
Leg, Aud. $\mathrm{o}^{\mathrm{b}} 8,4^{\mathrm{b}}{ }_{14}$; Ph. $7^{\mathrm{b}} 8,21$, $25,9^{\mathrm{b}} 30,37,14^{\mathrm{b}} 6$; calf of, $7^{\mathrm{a}} 37$, ${ }^{\mathrm{b}} 6,9^{\mathrm{b}} 8,10^{\mathrm{a}} 29,13^{\mathrm{a}} 15$; position of, in rising from a sitting posture, Mech. $57^{\text {b }}$ 22, 33, 34 .
Length, divisible in bulk and distance, Lin. $69^{\mathbf{a}} 25$; infinite and finite, $69^{2} 29$.
Leopard, see Panther; l.'s bane, Mir. $31^{\text {a }} 5$.
Leprosy, Col. $97^{\text {b }}$ I5.
Lesbian wares, Mir. $39^{\text {b }} 7$.
Lesbos, Vent. 73^{a} 8, b_{21}.
Less prevailing over greater, Mech. $47^{3} 22$.
Lethargy, Ph. $6^{\mathrm{b}}{ }_{25}{\text {, } 11^{\mathrm{b}}}^{\mathrm{b}}$ 10, 20, 30, $13^{a} 5$.
Letters, ancient, on inscribed pillar, Mir. $43^{\text {b }}$ 15-44 5 .
Leucadians, Ph. $8^{\text {a }} 3$ I.
Leucippus, $M X G .80^{a} 7$.
Leuconotus (SSW. wind), Vent. $73^{\text {b }}$ 10.

Leucosia, the Siren, Mir. $39^{\text {a }} 33$.
Lever, Mech. 48^{a} I4, 50^{b} I3, $53^{\text {b }} 12$, $54^{\text {a }} 13$; elements of, $50^{\text {a }} 37$; double l., in the axe, $53^{b} 24$, in the nut-cracker, $54^{\mathrm{a}} 37^{-\mathrm{b}} 15$, in toothextractor, $54^{\text {a }} 22-32$, in wedge, $53^{\text {a }} 21-31$; large weights raised by, $50^{\mathrm{a}} 30^{-\mathrm{b}} 9,53^{\mathrm{a}} 39$; mast as a 1., $51^{\mathrm{a}} 40$; oar as a 1 ., $50^{\mathrm{b}} 11$; plank as a $1 ., 53^{\text {a }} 9-17$; piece of wood as a 1., $57^{\text {b }} 12$; problems of the 1 ., $47^{\text {b }} 10-15$; pulley as a 1 ., $53^{\mathrm{a}} 39,{ }^{\mathrm{b}} \mathrm{I}$; rudder as a l., $50^{\mathrm{b}} 3 \mathrm{I}$; in steelyard, $53^{\text {b }} 30,54^{\text {a }}$ Io.
Lewdness, $P h$. $12^{\text {b }} 7,13^{\text {b }} 5$.
Libanus, Vent. $73^{\text {a }} 15$.
Liberality, $P h .9^{\text {b }} 34,11^{\text {a }} 1-3,12^{\text {b }}$ 22, 35 .
Libya, Mir. $44^{\text {a }} 3,6,46^{\mathrm{a}} 38$; Vent. 73^{b} II.
Lichen, Col. 91 ${ }^{\mathrm{b}} 26,92^{\mathrm{a}}$ I.
Life, in animals and plants, $P l .15^{a}$ $10-13,16^{2} 22 \mathrm{ff}$.

Ligeia, the Siren, Mir. $39^{\text {a }} 33^{\circ}$
Light, the colour of fire, $\operatorname{Col} .91^{\text {b }} 7-$ 17 ; in mixtures, $92^{\text {a }}$ 10-1 5,28 , ${ }^{b_{22}-30}, 93^{\text {a }} \mathbf{1 - 5},{ }^{\text {b }} 11,15-94^{\text {a }} 15$; sensation of, Aud. $^{2} 2^{2}$ 12 ; see also Firelight, Sunlight.
Liguria, Mir. $37^{\text {b }}$ 16-25.
Limit, of Being, $M X G \cdot 75^{\text {b }} 37$; nature of $1 ., 78^{a} 18, b^{10-14}$; the One has no $1 ., 77^{\text {b }} 8$; a sphere must have $1 ., 76^{\mathrm{a}} 11,78^{\mathrm{a}} 21$; a thing which is ungenerated may have a l., $75^{\text {b }} 38,76^{\mathrm{a}}$ II ; see also Unlimited, Infinite.
Limitation, mutual, of the Many, $M X G \cdot 77^{\mathrm{b}} 7,8,78^{\mathrm{b}} 2$.
Limited, existents, in relation to one another, $M X G$. $76^{\mathrm{a}} 3,20-21$; God is neither 1. nor unlimited, $77^{\mathrm{b}} 3,20$; things may be l. though the whole is unlimited, $76^{2} 5$.
Line, Mech. lines described by movements of points in a rhombus, $54^{b} 17 \mathrm{ff}$. ; enclosing circle, $47^{\text {b }} 24 ; \operatorname{Lin} .68^{\text {a }} 19,22,{ }^{\text {b }} 13,18$, $69^{\mathrm{a}} \mathrm{I}, 2,13,70^{\mathrm{a}} 4,21, \mathrm{~b} 6,21,23$, $71^{\mathrm{a}} 3,72^{\mathrm{a}} 8,30, \mathrm{~b}_{2} 6,28$; commensurate lines, $68^{\mathrm{b}} 6-8$; definition of a 1., $69^{\text {b }} 3$ I ; 1. ' Ex duobus nominibus', $68^{\text {b }} 19$; the idea of a 1 ., $68^{2} 9,69^{2} 17,21$; the ideal $1 ., 69^{2}$ 17, is indivisible, $68^{\text {a }} 10$; 'irrational' lines, $68^{\text {b }}$ I8, 21 ; 'rational', $68^{\text {b }}$ I5, 18, 21 ; a 1. compared with a space of time, $7 \mathrm{I}^{\mathrm{a}} 16-20, \mathrm{~b}_{3}$; a 1 . is a magnitude, $7 \mathrm{I}^{\mathrm{a}} 20$; a 1 . is made up of indivisible lines, $70^{\text {b }} 18$; a l. admits of two modes of conjunction, $70^{2} 20-2$; every 1 . can be divided equally or unequally, $70^{2} 26$, admits of bisection, $70^{2} 29$, if not finite has two terminal points, $70^{\text {b }} 10,72^{\mathrm{a}} 21$; if one 1. is superimposed on another, the breadth is not increased, $7 \mathrm{I}^{\mathrm{a}} 23-24$; if 1 . consists of ' simples', composite time must also do so, $70^{\text {b }} 9$; if indivisible lines exist, part of a 1 . is not a 1 ., $7 \mathrm{I}^{\mathrm{a}} 9$, one 1 . will be longer than another by a point, $7 \mathrm{I}^{3} 10 \mathrm{ff}$; a 1., if it consists of one point only, is a point, $70^{\text {b }} 15$; if a 1 . consists of points, point will be in contact with point, $7 \mathrm{I}^{\mathrm{b}} 4^{-16 \text {, there will no }}$ longer bestraight and curved lines, $71^{b^{b}} 20-26$, all things would be
divisible into points, $72^{a} 6-11$; if a l. consists of points in contact, the circumference of a circle will touch the tangent at more points than one, $7 \mathrm{I}^{\mathrm{b}}{ }^{1} 5-20$; a 1. cannot consist of points, $71^{\mathrm{a}} 6,{ }^{\mathrm{b}} 3,19,26$, $72^{a} 12$; points in a l. must touch or not touch, $7 \mathrm{I}^{\text {b }} 26-3 \mathrm{I}$; if a point touches a l., it is not in contact with it, $72^{\text {a }} 24-27$; a point cannot be subtracted from a line except incidentally, $72^{\text {a }} 13-24$, is not the smallest constituent of a $1 ., 72^{\text {a }}$ $30^{-\mathrm{b}} 24$; see also Indivisible lines, Non-indivisible lines, Straight line, Points in a line.
Lion, $P h .5^{b} 18,25,6^{b} 9,7^{\mathrm{a}} 18,9^{\mathrm{b}}$ I5-36, $10^{\text {b }} 5,11^{a} 15,33, b_{2}, 34$, $12^{\text {b }} 16,{ }^{b} 6,24,34,36,13^{a} 14$; foods poisonous to, Mir. 45^{3} 2834.
'Lion-killer', Mir. 45 ${ }^{\text {a }}$ 28-34.
Lip, Aud. I ${ }^{\mathrm{b}} 39 ; P h .8^{\mathrm{a}}{ }_{32}$ 2 $^{1} \mathrm{II}^{\mathrm{a}} 18$ 28.

Lipara, Mir. $32^{\text {b }} 29,33^{\text {a }} 12,15,38^{\text {b }}$ 31.

Lips (SW. wind), Vent. $73^{\text {b }}$ II.
Lisping, Aud. I ${ }^{\text {b }} 7$.
Liver, Mir. $42^{\text {a }} 16$.
Lizard, climbs trees, Mir. $3 \mathrm{I}^{\mathrm{b}} 6$; sloughs and swallows its skin, $35^{\text {a }}$ 26 ; star-1., $45^{\text {b }} 4-7$.
Localization of sounds, Aud. $0^{8} 21-$ ${ }^{\mathrm{b}} \mathrm{I}$.
Locrian, Mir. $47^{\text {b }} 7$.
Locusts, Aud. $4^{\text {a }} 23$; eaten by moles, Mir. $47^{\text {b }} 4$; fight scorpions, $44^{\text {b }}$ 23-31.
Loins, $P h .7^{b} 9,25,8^{\text {a }} 15$.
Long objects, more difficult to carry than short, Mech. $57^{\text {a }} 23 \mathrm{ff}$.
Loquacity, $P h h^{6}{ }^{\text {b }} 8-2 \mathrm{I}, 8^{\mathrm{b}} 8,10^{\text {a }}$ 3I, ${ }^{1} 15$.
Love, $P h .5^{a} 7$; (in Hesiod), $M X G$. $75^{\text {a }} 13$; see also Erotic.
Love-charm, Mir. 46 $^{\text {b }} 7-9$.
Low spirits, $P h . \delta^{a} 7-11$; see also Despondency.
Lucanians, Mir. $38^{\text {a }}$ Io.
Lungs, and quality of voice, Aud. $0^{\mathrm{a}} 21,3^{1-\mathrm{b}} 19, \mathrm{I}^{\mathrm{a}} 13,3^{\mathrm{a}} 13,4^{\mathrm{b}} 13^{-}$ 26.

Lusi, Mir. $42^{\text {b }} 6$.
Lustre, Col. 92^{2} 28, b7, $93^{\text {a }} 11$ - 16.
Lycia, Mir. $42^{\text {b }} 25$.
Lycormas (River), Mir. $47^{\text {a }}$ I.
Lydia, Mir. $31^{\text {b }} 26,33^{\text {a }} 19,34^{\text {a }} 23$.

INDEX

Lye-mixture, Col. 91 ${ }^{\text {a }} 8,94^{\text {a }} 22$.
Lynx, Mir. $35^{\text {b }} 29$.
Lyrantians, Vent. $73^{\text {a }} 8$.
Lyre, Aud. I ${ }^{\text {b }} 18$.
Macalla, Mir. $40^{1} 17$.
Macedonia, Mir. $33^{\text {a }} 28,{ }^{\mathrm{b}} 18,35^{\text {a }}$ $34,42^{b} 17$.
' Mad' vine, Mir. $46^{\text {a }} 38$.
Madness, caused by box-tree honey, Mir. $3 \mathrm{I}^{\mathrm{b}} 24$, by ' sound-minded' stone, $46^{\mathrm{b}} 28$, by 'sword-stone', $47^{\mathrm{a}} 5$; tales of, $32^{\mathrm{b}} 17-25,47^{\text {b }}$ 8-10.
Maeander, Mir. $46^{\text {b }} 26$.
Maedica (in Thrace), Maedi, Mir. $30^{a} 6,41^{a} 27$.
Magnitude, Lin. $68^{\mathrm{b}} 23,69^{\mathrm{a}} 16$; composite, $68^{\text {b }} 26$; simple, $68^{\mathrm{a}} 6$, I9; a line is a m., $71^{\mathrm{a}} 20$; points can constitute no m. by composition, $71^{2} 21-26$.
Magydum, Vent. $73^{\text {a }} 5$.
Male, sex, characters of, Ph. $6^{\text {b }}{ }^{32-}$ $34,9^{\mathrm{a}} 3 \mathrm{ob}^{-\mathrm{b}} 36,10^{\mathrm{a}} 17,26,30,36$, b8, $10,14,24,26,36,11^{2} 12,14^{\text {a }} 5$, 9 ; m. palms, Pl. $21^{2} 14 \mathrm{ff}$; m. plants, $17^{\mathrm{a}} 7,8,21^{\mathrm{b}} 22 \mathrm{ff}$.
Mallow, $P l .19^{\text {b }} 17$.
Mallus, Vent. $73^{\text {a }}$ 1, 1 I.
Malnutrition, and colour, Col. $97^{\text {a }}$ $16-30,{ }^{\mathrm{b}} 25,32,98^{\mathrm{a}} 12$-b $^{\mathrm{b}} 6,{ }^{\mathrm{b}} 31,99^{\mathrm{a}}$ $2-7$; and voice, Aud. $3^{\text {b }} 22$; and dullness of sense, $P h .10^{\mathrm{b}} 23$.
Mane, of lion, Ph. $9^{\mathrm{b}} 25$; of bison and horse, Mir. $30^{2} 10$.
Mania, $P h .8^{\text {b }} 2$ 1-26, $12^{2} 23-25$; see also Madness.
Mantle of Alcimenes, Mir. 38 ${ }^{\text {a }}{ }^{15-}$ 26.

Manuring, Pl. $21^{\mathrm{a}} 37$.
Many, the Many, MXG. the Many can only exist if Being is made up of several constituents, $74^{\text {b }} 2$, 3 ; if the M. exists, it must arise from what is not, $74^{\mathrm{b}} 20,21$; existents are m., $74^{\text {b }} 28, .79^{\mathrm{a}} 16 \mathrm{ff}$; the M. due to mixture of the elements, $75^{\mathrm{b}} 12$; Being is m., if composed of dissimilar parts, $76^{2} 22,23$; mutual limitation of the M., $77^{\text {b }} 7,8,78^{\text {b }} 2$; motion of the M., $74^{\text {b }} 28,77^{\text {b }}$ II ; Zeno's view that the One can be m. in the sense of having parts, $79^{\mathrm{a}} 4$, 5 ; see also Multiplicity.
Marble, Parian, Mir. $44^{\text {a }} 15$.
' Maricus', easily ignites, Mir. $33^{\text {a }}$ 27.

Marjoram, $P l .18^{\text {b }} 38,20^{\mathbf{2}} 35$; Mir. $31^{82} 2$.
Market, Mir. $39^{\text {b }} 5$.
Marksmanship of the Ligurians, Mir. $37^{\text {b }}{ }^{17}$-20.
Marseus, (E. wind), Vent. $73^{\text {a }} 19$.
Marsh plants, $P l .26^{\text {b }} 10 \mathrm{ff}$.
Marsus, Vent. $73^{\text {a }} 19$.
Marten, Mir. $3 \mathrm{I}^{\mathrm{b}}$ I.
Massilians, Mir. $37^{\text {a }} 28,{ }^{\text {b }}$ 8.
Mast, as a lever, Mech. $51^{\text {a }} 40$; m.socket, $51^{\mathrm{a}} 40,{ }^{\mathrm{b}} 5$.
Mathematics, mathematicians, Mech. $47^{\mathrm{a}} 27$; Lin. $68^{\mathrm{b}} 4,69^{\mathrm{b}} 9$, 13, 29, $70^{\text {a }} 19$.
Maturation and colour, $\operatorname{Col} .92^{\text {b }} 9$, $31,94^{\text {b }} 12-99^{\mathrm{b}} 18$.
Mean, the, between convex and concave (the straight), Mech. $47^{\text {b }} 28$; between greater and smaller (the equal), $47^{\text {b }} 27$.
Meanness, see Smallness of soul.
Meat, weighing of, Mech. $53^{\text {b }} 35$.
Mechanical, motion, Mech. $4^{8 \mathrm{a}}$ 15 ; problems, $47^{\text {a }} 24$; skill, $47^{\text {a }}$ 19.

Medea, Mir. $39^{\text {b }}{ }^{18}$.
Media, Mir. $32^{\text {a }} 26,33^{\text {a }}$ I.
Mediannus, Pl. 20^{2} 19.
Medicinal plants, $P l .21^{\text {b }} 34,26^{\mathrm{b}} 2$.
Megalopolis, Mir. $4^{2}{ }^{\text {b }} 26$.
Megarid, Vent. $73^{\text {b }}{ }^{18 .}$
Melancraera, name of the Sibyl, Mir. $38^{\mathrm{a}} 9$.
Melissus, $M X G \cdot 77^{\mathrm{b}} 22,79^{2} 22$; his views stated, $74^{\mathrm{a}} 2^{-\mathrm{b}} 8$, criticized, $74^{\mathrm{b}} 8-77^{\mathrm{b}} 11$.
Melos, Mir. $31^{\text {b }} 19,33^{b} 3$.
Memory, $P h_{.} 8^{\mathrm{a}} 37,{ }^{\mathrm{b}} 9$.
Mentores, Mentoric district, Mir. $39^{\mathrm{a}} 34^{-\mathrm{b}} 2$.
Meses (NNE. wind), Vent. $73^{\text {a }} 3$.
Mesopotamia, Mir. $45^{\text {b }} 8$.
Messina, Straits of, Mir. $34^{\text {b }} 3,39^{\text {a }}$ $27,40^{\mathrm{a}} 2,43^{\mathrm{a}} \mathrm{I}-32$; Vent. $73^{\mathrm{b}} \mathbf{1}$.
Metals, 'concoction' in, Pl. $22^{\mathrm{a}} 26$, 28, 31.
Metamorphosis, Mir. $36^{2} 15$.
Metapontium, Mir. $40^{2} 28$.
Meteorologica, referred to (?), Pl $22^{\text {b }} 33$.
Method of criticism, MXG. $74^{\mathrm{b}} 8 \mathrm{ff}$, $75^{2} 18 \mathrm{ff}$.
Mice, eat metals, Mir. $32^{\text {a }} 22-25$; Cyrenaic kinds, $32^{\mathrm{a}} 3 \mathrm{I}^{-\mathrm{b}} 3$; poi-
sonous kind, $45^{\text {b }} 7$; field-m. in water, $42^{\text {b }} 7$.
Milk, abundant in Illyria, Mir. $42^{b} 30$.
Minae, weight of four, Mech. $53^{\mathrm{b}} 9$. Mind and body, see Body and soul.
Minerals, Pl. $23^{a} 18$.
Mines, Mir. $32^{\text {b }} 28,34^{\text {a }} 23$; bitumen, $42^{\text {b }} 15$; copper and iron, $37^{\text {b }} 26$ 32 ; cyanos and gold-solder, $34^{\text {b }} 20$; gold, $32^{\text {a }} 25,33^{\text {a }} 29$; salt, 44^{a} I2.
Minos, Mir. $36^{6} 28$.
Mint, Pl. $21^{\text {a }} 30$.
Mirrors, colour of reflections in, Col. $93^{1} 3$ I.
Mischievousness, Ph. $10^{\mathrm{b}} 3,30$.
Missiles, Aud. $2^{\text {a }} 34$; travel faster from a sling than from the hand, Mech. $52^{\text {a }} 39^{-b}$ IO.
Mitylene, Vent. $73^{\text {a }} 11$.
Mixture, for kindling fire, Mir. $32^{\text {T }}$ 27 ; with the One, impossible, $M X G .74^{\mathrm{a}} 2 \mathrm{I}, 23^{-\mathrm{b}} 2$; of existents, $77^{\text {a }} 3-11$.
'Modon', a charm against wild beasts, Mir. $46^{\mathrm{a}} 32$.
Moisture, Col. necessary in dyeing, $94^{a} 26$; and colour of plants, $94^{\text {b }}$ 19-97 30 ; and colours of animals, $97^{\mathrm{b}} \mathrm{I}-99^{\mathrm{b}} 14$; and tones of voice, Aud. $1^{81} 10-20,4^{\text {a }} 21$; of flesh, $P h .7^{b} 12,8^{a} 25,9^{b} 11,13^{b} 16,20$.
Moles, none at Coronea, Mir. $42^{\text {b }}$ 3; not blind in Aetolia, $47^{\text {b }} 3$; usually eat earth, but locusts in Aetolia, $47^{\text {b }} 4$.
Monaepus (bison), Mir. $30^{a} 7$.
Money, forbidden in Balearic Isles, Mir. $37^{b} 3^{-7}$
Moon, Mir. $31^{\text {b }} 16$; and tides, $34^{\text {b }}$ 4 ; m.-light, Col. $93^{\text {b }} 20$.
Moroseness, Ph. $5^{b} 6,7^{a} 5,12^{3} 3$, $12^{b} 25$.
Mossynaeci, Mir. $35^{\text {a }} 9$.
Mother of the Gods, Mir. $46^{\text {b }}{ }_{5}$.
Motion, movement ; Ph. physiognomic significance of movement, $6^{\mathrm{a}} 28, \mathrm{~b}_{2} 5,37,7^{\mathrm{b}} 10,26,32,34$, $8^{\mathrm{a}} 5,11,14,9^{\mathrm{b}} 32,13^{\mathrm{a}} 3-20 ; P l$. in plants, $16^{\mathrm{a}} 26,{ }^{\mathrm{b}} 9 \mathrm{ff},{ }^{1} 7^{\mathrm{b}} 23$, $22^{\mathrm{b}} 1 ;$ Mech. of bodies continued when no longer in contact with impelling force, $5^{3} 17-22$; of one body by another, $55^{\text {b }} 34$ ff. ; of circles, $47^{\text {b }} 20,48^{\mathrm{a}} 18$; of the circumference of a circle, $5 \mathrm{I}^{\text {b }} 35$; of extreme points in a rhombus,
$54^{\mathrm{b}} 16 \mathrm{ff}$. ; increases the force of a weight, $53^{\text {b }}{ }^{18-23}$; objects already in m . easier to move, $52^{\text {b }} 4^{-}$ $7,53^{\mathrm{a}} 24,25,58^{\mathrm{a}} 3-12$; of radii, $49^{\mathrm{a}} \mathrm{I} 5 \mathrm{ff}$.; that which has no m. cannot move anything else, $58^{\mathrm{a}} 3 \mathrm{I}$, 32; Lin. of a body along a line, $68^{\mathrm{a}} 19,22,69^{\mathrm{a}} 28, \mathrm{~b}_{24}, 70^{\mathrm{b}} 1,71^{\text {a }}$ 14; in a joint, $72^{\text {b }} 29$; of thought, $68^{2} 25,69^{2} 33, \mathrm{~b}_{\mathbf{I}} ; M X G$. of Being, various theories of, $76^{\text {b }}$ 13 ff .; if Being is one, its m. is of the whole, $77^{\text {a }} 1$; Being is without m., $74^{\text {a }} 15,76^{b} 12$, criticized 76^{b} I 3 , denied, $76^{\mathrm{b}} 36$; belongs to a plurality of things, $77^{b} 15$, 16 ; existents in m., $74^{\text {b }} 27$; of God and the One, $78^{\mathrm{b}} 37 \mathrm{ff}$; ; of the many, $77^{8} 3$, b 11 ; not-being has no motion, $77^{\text {b }}$ Io, 11 ; see also Moved, Unmoved.
Mouth, Aud. Ca 21, 23, 1 ${ }^{\text {b }} 8,12$; Ph. $9^{\mathrm{b}} \mathrm{I} 6,39,11^{\mathrm{a}}$ I9.
Mouthpiece of oboe, Aud. I^{b} 33, $2^{\text {b }} 22,26,4^{2} 13$.
Move, nothing can (theory of Gorgias), $M X G .80^{a}$ I ff.
Moved, $M X G$. God is not m. nor unmoved, $77^{\text {b }} 9$, 10, 20 , criticized $7^{8 b} 15-79^{a} 9$; not-being not necessarily unmoved because Being is $\mathrm{m} ., 78^{\mathrm{b}} 15,16$; the One is neither still nor m ., $77^{\mathrm{b}} 17$.
Mulberry, Pl. $20^{a}{ }^{31}$, ${ }^{\text {b }}$ 13, 41.
Mules, fertile in Cappadocia, Mir. $35^{b} \mathrm{I}$.
Mullein, Pl. $25^{\text {a }} 4$.
Multiplicity of things, MXG. $74^{\text {b }}$ $24,75^{a} 2,7,77^{a} 3$; and see also Many.
Musaeus, Mir. $43^{\text {b }} 4$.
Muscles, Pl. $18^{\text {a }} 20$.
Mushrooms, $P l$. $19^{\text {a }} 31,25^{\text {b }} 17$.
'Musical', as an accidental predicate, Mech. $56^{3} 35$.
Musician, $P h .6^{a_{i c}} 16$.
Mussel, Mir. $3^{11^{\mathrm{b}}} \mathrm{II}$.
Mustard, Pl. $20^{2} 36$.
Mustela, Mir. $32^{\text {b }} 2$.
Myrrh, Pl. $18^{3} 5$.
Myrtle, Pl. $19^{\mathrm{b}} 22,20^{\mathrm{a}} 3 \mathrm{I}, 28^{\mathrm{b}} 3$; Mir. $33^{a} 15$.
Mysia, Mir. $45^{\text {a }} 17$; Vent. $73^{\text {a }}$ 10.
Mysteries of Hecate, Mir. $47^{\mathrm{a}} 6$.
Nails, Ph. $10^{\text {a }} 21 ; P l .18^{\text {b }} 15$.
Natural, problems, Mech. $47^{\mathbf{3}} 25$;
science, defined, $47^{\text {a }} 29$; speculations, $47^{\boldsymbol{a}} 26$.
Nature)(art, Mech. $47^{\text {a }}$ 11-I3, 21 ; no deviation in, $47^{\text {a }} 15$.
Navel, Ph. $8^{b} 3,10^{\text {b }} 17$.
Naxos, Mir. $44^{\text {b }} 32$.
Neck, Col. 93^{2} 15, $98^{3} 12,99^{3} 3$; Aud. ob ${ }^{23}$; Ph. $7^{\mathrm{a}} 36,{ }^{\mathrm{b}} 14,25$,
 28 ; back of, $7^{\text {b }} 20,10^{\text {b }} 35,12^{\text {b }} 23$.
Necklace, Diomede's, Mir. $40^{\text {b }} 20$.
Negation, $M X G .78^{\text {b }} 18,29,34$.
Negative, predicate, $M X G \cdot 78^{\mathrm{a}} 32$; prefix (' a privative'), $78^{\text {b }} 22$.
Neleus, Mir. $4^{6{ }^{\text {b }}} 3^{8 .}$
Nest, Mir. 30^{b} 12, 15 .
' Next', in a series, Lin. $7 \mathrm{I}^{\text {b }} 27$.
Nightingale, Aud. $0^{3} 26,4^{\text {a }} 23$.
Nightshade, Pl. $21^{\text {² }} 33$.
Nile, Mir. $46^{\text {b }} 22$.
Noises, Aud. $0^{\mathrm{a}} \mathrm{I}, \mathrm{I}^{\mathrm{a}} 36,2^{\mathrm{a}} 40,{ }^{\mathrm{b}} 40-$ $3^{a} 5,{ }^{b} 12$ 。
Non-indivisible lines, Lin. $69^{\text {a }} 3$.
North wind, Mir. $31^{a}{ }^{1}{ }^{15}, 18$; Vent. 73^{2} I-12.
Northern and southern people compared, $P h .6^{\text {b }}$ 16-1 8.
Nose, $P h .9^{\mathrm{b}} 18,23,11^{\mathrm{a}} \mathrm{a}^{28} \mathrm{~B}^{\mathrm{b}} 4$ 。
Nostrils, Ph. $8^{\text {a }} 34,1 I^{\text {b }} 3$.
Not-being, $M X G$. can it have existence? $79^{2} 35 \mathrm{ff}$; cannot come to be, $75^{\mathrm{a}} 37$; has no motion, $77^{\mathrm{b}} 10$, II; is generated, if Being changes, $74^{\mathrm{a}} 22$; is nowhere, $77^{\mathrm{b}} 14$; is unlimited, $77^{\text {b }} 3-5,78^{\mathrm{a}} 25-37$; nothing can come out of N., $75^{\text {a }} \mathrm{I}$, 22, 28; Being and N., Gorgias' view, $79^{\text {a }} 25 \mathrm{ff}$., cannot have the same nature, $77^{\mathrm{b}} 6$, may have the same attributes, 78²26-37; Being, if it moves, becomes N., $80^{\mathrm{a}} 2$; N. does not produce Being, and vice versa, $77^{\text {a }} 22$.
Nothing can come into being out of n., $M X G .74^{\mathrm{a}} 2,3,{ }^{\mathrm{b}} 12,28 ; \mathrm{n}$. exists (Gorgias), $79^{\text {a }} 11$ ff., $80^{b} 17$, criticized, $79^{\mathrm{a}} 33^{-\mathrm{b}} 19$; n. is, but all things become, $75^{9} 15$.
Not-to-Be) (To-Be, MXG. $79^{\text {a }} 25$ ff., $\mathrm{b}_{2} \mathrm{ff}$.
Notus (S. wind), Vent. $73^{\text {b }} 7$; origin of name, 8, 9.
'Now', the, as a discrete element in time, Lin. $7 \mathrm{I}^{\mathrm{a}} 16 \mathrm{ff}$, ${ }^{\mathrm{b}} 4$.
Number, Lin. $69^{\mathbf{a}} 15$; complex n., $69^{2} 14$; 'little' as applied to, $69^{2} 12$; must be odd or even, $M X G \cdot 78^{\mathrm{b}} 35$.

Nutcracker, mechanics of, Mech. $54^{\mathrm{a}} 32^{-\mathrm{b}} \mathrm{I} 5$.
Nutrition, Col. effect on colour of plants, $95^{a} 21,97^{a} 1,15-30$, of animals, $97^{\text {b }} 22-99^{2}$ I8; Pl. common to plants and animals, $16^{\mathrm{b}} 12 \mathrm{ff}$; of plants, $15^{\text {b }} 27 \mathrm{ff}$., $16^{\mathrm{a}} 3,17^{\mathrm{b}} 16,27$.
Nutritive, material, of animals, $P l$. $28^{\mathrm{a}} 20$, of plants, $27^{\mathrm{b}} 20,34,4 \mathrm{o}$, $28^{\text {a }} 6,16,19,33,36,38,{ }^{\text {b }}$ I 9 ; n. principle in plants, $17^{3} 25$.
Nut-tree, $P l$. $19^{\text {b }} 20,21^{\text {a }} 28$.

Oak, its bark an antidote to 'arrowpoison', Mir. $37^{\text {a }} 19$.
Oar, Mech. $50^{\text {b }}$ II, 17 ff., $51^{\mathrm{a}} 2,16 \mathrm{ff}$.
Oath, see Perjury.
Oboe, or pipe, Aud. ob $24, \mathrm{I}^{\mathrm{a}} 28,{ }^{\mathrm{b}} 18$, $32-40,2^{a} 8, b^{b} 8-29,3^{a} 18-20,4^{a}$ II-I 6 .
Observation, place of, in theory of colours, Col. $92^{\mathrm{a}} 300^{\mathrm{b}} 32$, in physiognomy, $P h .5^{\mathrm{a}} \mathrm{2I}^{-\mathrm{b}} 9,6^{\mathrm{a}}{ }^{13-15}$, $7^{\text {a }} 11-30,9^{\text {a }} 8-18$.
Obstinacy, Ph. $9^{2} 36$.
Obtuse angle, in a rhombus, Mech. $55^{a} 11,15,18,23$.
Odour, Col. $96^{\text {b }} 20 ;$ Aud. $2^{8} 12$; $P l$. of palms, $2 \mathrm{I}^{\mathrm{a}} \mathrm{I} 9$; of plants, $2 \mathrm{I}^{\mathrm{b}} 40$; Mir. of box-tree honey, $3 \mathrm{I}^{\mathrm{b}} 2 \mathrm{I}-25$; of copper, $34^{\mathrm{a}} 5$; of fire-stone, $41^{\text {a }} 33$; of ichor, $38^{\text {a }}$ 30; of Italian lake, $36^{a} 32$; of oil-well, $41^{2} 15$; of unguents, $32^{\text {a }}$ 4, $45^{\mathrm{a}} 35$; of violets at Enna, $3^{6}{ }^{\text {b }} 18$.
Oenarea, Mir. $37^{b} 32$.
Oil, Col. $91^{\mathrm{b}} 23,96^{\mathrm{a}} 27$; Pl. $26^{\mathrm{a}} 18$; plants producing, $2 \mathrm{I}^{\mathrm{b}} 33$; why it floats on water, $23^{\text {a }} 30 \mathrm{ff}$; Mir. turpentine-o., $37^{\text {a }} 33$; well of, $41^{\text {a }}$ 15; see also Olive-oil.
Oily juice, substance, $P l .27^{\mathrm{a}} 13 \mathrm{ff}$., $29^{\mathrm{a}} 5 \mathrm{ff}$.
Olbia, Vent. $73^{\text {a }} 5$.
Old, utterance in the, $A u d .1^{\mathrm{b}} 6,2^{\mathrm{a}} 3$.
Olive, olive-tree, $P l$. $18^{\mathrm{a}} 32,19^{\mathrm{b}} 5$, $20^{\mathrm{a}} 32,{ }^{\mathrm{b}} 4 \mathrm{I}, 21^{\mathrm{a}} 25, \mathrm{~b}_{1} 6,27^{\mathrm{a}} 4 \mathrm{O}$, $28^{\text {b }} 3$; sacred Athenian, Mir. $34^{\text {a }}$ 12-16, $46^{a} 6$; at Olympia, $34^{\text {a }} 17^{-}$ 22.

Olive-oil, Col. $96^{\mathrm{a}} 27$; Aud. $3^{\mathrm{b}} 16$; Mir. $31^{\mathrm{b}} 22,33^{\mathrm{a}} 9,44^{\mathrm{a}}$ 18.
Olympia, Mir. $34^{\text {a }} 17,21$.
Olympias (NNW. wind), Vent. $73^{\text {b }}$ 21.

INDEX

Olympus (Pierian), Vent. $73^{\text {b }} 22$.
Olynthus, Mir. $42^{\text {a }} 5$.
Omens, Mir. $41^{\mathrm{b}} 28-42^{\mathrm{a}} 4$, 18-24.
One, the One, $M X G$. are existents o. or many? $79^{\text {a }} 16 \mathrm{ff}$; Being is o., $74^{\text {a }} 12,{ }^{b} 7$, questioned, $76^{\text {a }}$ 21 ff ., denied, $76^{\mathrm{b}} 35$; the O. cannot change, $74^{\mathrm{a}} 20$; the O. changing from being to being, $75^{\text {b }} 3$; ;
the O. would be more than 0 ., if things changed, $77^{\text {b }} 14,15$; the 0 . is free from grief, pain, and disease, $74^{\text {a }} 19$; God is $0 ., 77^{a} 24$, $34-36,{ }^{2} 2,9$; Xenophanes' use f the term as applied to God, $79^{\text {a }} 3$; the O. has no likeness to Notbeing or the many, $77^{\mathrm{b}} 7,8,17$, 18 ; the O . cannot mix with anything else, $74^{\text {a }} 2 \mathrm{I}$, $23-{ }^{-b_{2}}$; motion of the $0 ., 78^{\mathrm{b}} 39 \mathrm{ff}$.; the O . is neither still nor moved, $77^{\text {b }} 16$, 17 ; is without motion, $74^{2} 15$; if it has no body, how can the O. be unlimited? $76^{\text {a }} 29$; Zeno's use of the term One, $76^{a} 25,26,79^{a} 4,5$.
Opigaidum, Pl. $18^{\text {b }} 39$.
Oracle, Mir. $34^{\text {b }} 27$.
Orchomenus, Mir. $38^{\text {b }} 3$.
Orthonotus, Vent. $73^{\text {b }} 6$ (note).
Orthosian Artemis, Mir. $47^{\text {b }}$ I.
Osprey, Mir. $35^{\text {a }} 2$.
Othrys (Mt.), Mir. 46^{b} Io.
Ox, Mir. $30^{\text {a }} 8,12,32^{\text {b }}$ I5; see Bison, Cattle.
Oxus (River), Mir. $33^{\text {b }} 14$.
Paeonia, Mir. $30^{\text {a }} 5,7,33^{b} 6,8,42^{\text {b }}$ $33,46^{b} 30$.
Pagrean Mountains, Vent. $73^{\text {a }} 3$.
Pagreus (N. wind), Vent. $73^{\text {a }}$ I.
Pain, Ph. $5^{\text {a }} 8$; insensibility to, $8^{\text {b }}$ 37 ; Mir. 35^{3} 17-21 ; the One unaffected by, $M X G .74^{\text {a }}$ I9.
Pale, pallor, Ph. (λ euкóxpous), $8^{2} 34$,
 17; ($\mu \in \lambda i \chi \lambda \omega \rho o s), 12^{\mathrm{a}} 9$; of eyes (ळххо́ $\mu \mu \tau о \varsigma), ~ 12{ }^{\mathrm{b}} 8$.
Pale pink, or pale red, $\operatorname{Col} .97^{\text {b }}$ I3 (λ єuко́тирроs) ; Ph. $6^{\text {b }} 4,7^{\text {b }}$ I7 ($\lambda \in u к$ ќputpos).
Palici, Mir. $34^{\text {b }} 8$.
Palm, why called 'phoenix', Mir. $43^{\mathrm{b}} 6-14 ; P l .21^{\mathrm{a}} 8,28^{\mathrm{b}} 40,29^{\mathrm{a}}$ 3 ; male and female, $21^{2} 14 \mathrm{ff}$; see also Date.
Palm-island, Mir. $43^{\mathrm{b}} 7$.
Pamphylia, Mir. $33^{\text {a }} 6$; Vent. $73^{\text {a }} 6$.

Pandosia, Mir. $38^{8} 33$.
Pangaeus (Mt.), Vent. 73^{b} I6.
Pantheon at Athens, Mir. $34^{\text {a }} 13$.
Panther, or leopard, typical of female sex, Ph. $9^{\text {b }} 36-10^{\text {a }} 8$; mode of hunting, Mir. $31^{\text {a }} 4^{-10}$.
Paphlagonia, Mir. $35^{\text {b }} 23$.
Parallelogram, Mech. $54^{\text {b }}$ 28, 37 ; exterior angle of p. equals interior opposite angle, $56^{6} 24 ;{ }^{6} \mathrm{p}$. of force and distances ${ }^{\prime}, 48^{\text {b }}$ Ioff. ; opposite sides of a p. are equal, $56^{\mathrm{b}} 2 \mathrm{I}$; similar, $48^{\mathrm{b}} 20,54^{\mathrm{b}} 29,30,38$; ' $^{\text {' }}$. of velocities ', 54^{b} I6 ff.
Paralysing power, of hyaena, Mir. $45^{a} 24-27$; of leopard's bane, $13^{a} 9$.
Parasitism in plants, $P l .26^{\mathrm{b}} 32-$ $27^{\text {a }}$ I.
Parian marble, Mir. $44^{2 \pi}$ I 5 .
Parmenides, $M X G \cdot 76^{2} 6$; quoted, $76^{\mathrm{a}} 8-9,78^{b} 8-9$.
Part, Pl. definition of, $18^{\text {b }} 5,6$; parts of plants, $18^{a} 4^{-19} 9^{2} 41$, compared with those of animals, $18^{a} 16-21$, ${ }^{\mathrm{b}} 2,19^{\mathrm{a}} 19,20$; composite $)($ simple, 18^{2} 10-12.
Parthenope, the Siren, Mir. $39^{\text {a }} 33$.
Partridge, Col. 98a 27.
Pathic, $P h .^{2}{ }^{12} 2-16,10^{2} 34,13^{\text {a }} 18,35$.
Pavement, colour of, Col. $96^{\mathbf{a}}$ I1-17.
Peacock, Col. $99^{\text {b }}$ II.
Pear, pear-tree, Col. 97a 27; Plo $19^{\text {b }} 22,20^{\text {b }} 38,21^{\text {b }} 20$; with poisonous thorns, Mir. $45^{\text {a }} 15$.
Pebbles, why coloured in Elba, Mir. $39^{\text {b }} 23$-28; why round, Mech. $52^{\mathrm{b}} 29-53^{3} 4$.
Pedasa, Mir. $44^{\mathrm{a}} 35,{ }^{\mathrm{b}} 2$.
Pedicels, $P l .18^{\text {b }} 10$.
Pegs, of stringed instruments, $A u d$. $3^{2} 41$.
Pelasgians, Mir. $36^{\text {b }}$ Io.
Pelican, Mir. $31^{1{ }^{b}}$ 10-13.
Peloponnesus, Mir. $42^{\text {b }} 26$.
Pelorus, Mir. $40^{\text {b }} 25,28$.
Penuriousness, Ph. $9^{\text {a }} 23$.
Perennials, Pl. $18^{\mathrm{b}} 10$.
Pergamos, Mir. $34^{\text {a }} 23$
Perjury, test of, and punishment for, Mir. $34^{\mathrm{b}} 8-17,45^{b} 33-4^{\mathrm{a}} 5$.
Perpendicular, Mech. 49 ${ }^{\text {a }}$ 1, 32, 34, ${ }^{\mathrm{b}} \mathrm{I}_{4}, 5 \mathrm{O}^{\mathrm{a}} 8 \mathrm{ff}$., 55^{b} II, 12, 19, 23, $57^{\text {b }} 28$; Lin. 70^{a} 10, 12, 13 .
Perrhaebians, Mir. $43^{\text {b }} 14$.
Persia, Persians, Pl. $21^{\text {a }} 33$; Mir. $32^{\mathrm{a}} 28,33^{\mathrm{a}} \mathrm{I}, 38^{\mathrm{a}} 23$; P. Gulf, P. $21^{2} 3$ I.

INDEX

Persistence, $P h .13^{a} 5-7$; lack of, $12^{b} 15,21,13^{a} 5-9,{ }^{b}$ I $3-20$; see also Instability.
Perspective, Aud. 1 $^{\text {a }}$ 33-36.
Petitio principii, Lin. 69 23, 24.
Petrifaction, in mines near Pergamos, Mir. $34^{\text {a } 23-30 ; ~ i n ~ r i v e r ~}$ Cetus, $37^{\text {a }} 13$.
Peucestian, Mir. $36^{2} 5$.
Peucetians, Mir. $40^{\text {b }} \mathbf{I} 8$.
Phaethon, Mir. $36^{\text {b }} 2$.
Pharangites (NW. wind), Vent. $73^{\text {b }} 15$.
Phaselis, Vent. $73^{\text {a }} 8$.
Phasis, Mir. $46^{2} 28$.
Pheneus, Mir. $34^{\text {b }} 24$.
Phidias, tale of, Mir. $46^{\text {a }} 17$.
Philippi, Mir. $33^{\text {a }} 28$.
Philoctetes, Mir. $40^{\text {a }} 16$.
Philosophy, deduction characteristic of, $P h .7^{2} 9$.
Phlegm, Pl. $24^{\text {b }}$ 19; Mir. $45^{\text {a }} 21$.
Phoenicia, Phoenicians, Mir. $43^{\text {b }} 9$, 11, 44 9 -34; Vent. $73^{\text {a }}$ 13, ${ }^{\text {b }} 5$.
Phoenix (palm), origin of the name, Mir. 43^{b} 6-14.
Phrygia, Vent. $73^{\mathrm{a}} 24,{ }^{\mathrm{b}} 15$.
Phrygian ashes, Mir. $34^{\text {b }} 30$.
Physiognomy, or Physiognomony, methods of, $P h .5^{\text {a }} 19-6^{\text {a }} 18,7^{\text {a }}$ $3-30,8^{b} 30-9^{\text {a }} 25,14^{\text {a }} 6$-b $^{\text {b }}$; province of, $6^{2} 22-25$.
Pictures, perspective in, Aud. $1^{\text {a }}$ 32-36.
Pieria, a district of Macedonia, Mir. $33^{\mathrm{b}} 18$.
Piety, Mir. insured by stone of Sipylus, $46^{\text {b }} 3-6$; rewarded, $46^{\text {a }}$ 9-16; of camels, $30^{\text {b }} 5-10$.
Pigeon, see Dove.
Pigments, Col. $92^{\text {b }} 17$.
Pillar, brazen, at Eleusis, Mir. $43^{\text {b }}$ 2 ; inscribed, at Hypate, $43^{\text {b }} 15$ $44^{a} 5$; Pillars of Heracles, 33^{a} IO, $36^{\text {b }} 30,44^{\text {a }} 25$.
Pine, $P l .18^{\mathrm{b}} 36,20^{\mathrm{a}} 18,21^{\mathrm{a}} 7,29^{\mathrm{a}}$ 3 ; p.-nut, $20^{2} 33$.
Pink, Col. $96^{\mathrm{a}} 2,{ }^{\mathrm{b}} 14$; of blushing, Ph. $12^{\text {a }} 31,35$; see also Pale pink.
Pipe, see Oboe.
Pitch, Col. $91^{\mathrm{b}} 23 ; P l$. $18^{\mathrm{b}} 36$; spring of, Mir. $42^{\text {b }} 16$.
Pith, Pl. $19^{\text {a }} 33$.
Pithecusae, Mir. $33^{\text {a }} 14$.
Plains, why sandy, $P l .23^{\text {b }} 34 \mathrm{ff}$.
Plane, Lin. $68^{\mathrm{b}} 14,72^{\mathrm{a}} 9, \mathrm{~b}_{3}, 9,1 \mathrm{I}$, 28 ; divided at a line, $70^{\mathrm{b}} 32,71^{\mathrm{a}}$

2; if there are indivisible lines, there are indivisible planes, 70° 30 ff ., and part of a p. is not a p., $7 \mathrm{I}^{\mathrm{a}} \mathrm{IO}$; a solid is divided at a p ., $70^{\mathrm{b}} 32,7 \mathrm{I}^{\mathrm{a}} 2$; a solid consists of planes, and a p. of lines, $72^{2} 8,30$.
Plane-tree, wild, $P l .20^{\mathrm{b}} 4 \mathrm{I}$.
Planets, $P l$. $16^{\mathrm{a}^{2}} 23$.
Plank, the longer it is the more easily it bends, Mech. $53^{\text {a }}$ 5-18 ; why easier to lift and carry if held in the middle, $57^{\text {a }} 5-21$.
Planting, $P l$. methods of, $2 c^{\text {b }} 29 \mathrm{ff}$., 2 I $^{\text {b }} 39$; season of, $2 \mathbf{1 ~}^{\text {b }} 2 \mathrm{ff}$.
Plants, Col. colour of, $94^{\text {b }} 13-97^{\mathrm{a}}$ 32, $99^{\text {a }} 7-14 ; P l$. animate or inanimate? $16^{\text {b }} 3 \mathrm{ff}$; are p. animals? $15^{a} 19,16^{\text {a }} 1,{ }^{\text {b }} \mathrm{I}$; annual, 18^{b} IO, $19^{\mathrm{b}} 13$; causes of, five, $27^{\text {a }}$ $2-5$; change of species in, $21^{\text {a }}$ 26 ff . ; cold, effect of, on, $25^{\text {b }} 24$, $28^{3} 40 \mathrm{ff}$; colour in, and its causes, $19^{\mathrm{a}} 2,27^{\mathrm{b}} 18 \mathrm{ff} ., 28^{\mathrm{b}} \mathrm{I} 5,22 \mathrm{ff}$; compared with animals, $18^{a}{ }^{17}$ 21, $19^{a} 18,19,21^{a} 10$; composition in, $24^{\text {b }} 4$; 'concoction' in, $22^{\text {a }} 26,25^{\text {a }} 27,27^{\text {b }} 8 \mathrm{ff}$., $28^{a} 6$ ff., 29, ${ }^{b} 7,8,29^{b} 4$; corruption in, $18^{3} 3$; created before animals, $17^{\mathrm{b}} 35 \mathrm{ff}$.; desert-p., $25^{\mathrm{a}} 34 \mathrm{ff}$; desire in, $15^{\mathrm{a}} 22, \mathrm{~b}^{\mathrm{b}} 6$, 20; divisions of, $19^{a} 42 \mathrm{ff}$; ; earth, element of, in, $22^{\text {a }} 12, b_{2}$; elements in, $22^{\text {a }} 12-14, b_{2}, 28^{\mathrm{a}} 26$; essentials of p.-life, $26^{a} 37$; no excrement from, $17^{\text {b }} 19$; female, $17^{\mathrm{a}} 8,2 \mathrm{I}^{\mathrm{b}} 22 \mathrm{ff}$; fire, element of, in, $22^{a} 14,28^{8} 26$; garden-p., $19{ }^{\text {b }} 28,21^{\text {b }} 1,21$; generative principle in, $17^{\mathrm{a}} 25$; indoor-p., $19^{\mathrm{b}} 28$; intelligence in, $15^{\mathrm{b}} 17$; juices of, $21^{\mathrm{b}} 40,27^{\mathrm{a}} 13 \mathrm{ff}$., $29^{\mathrm{a}} 5 \mathrm{ff}$; life in, $15^{a} 10 \mathrm{ff}$., $16^{\text {a }} 27$; locality and position, effect of, on, $19^{\text {b }} 40$ ff., $21^{\mathrm{b}} 1,26^{\mathrm{a}} 39,{ }^{\mathrm{b}} 5 \mathrm{ff}$.; male, $19^{\mathrm{a}} 7$, $8,21^{\text {b }} 22$ ff. ; marsh-p., $26^{\text {b }}$ Io ff.; medicinal, $2 \mathrm{I}^{\mathrm{b}} 34,26^{\mathrm{b}} 2$; movement in, $16^{\text {a }} 26,{ }^{\text {b }} \mathrm{g}$ f., $17^{\mathrm{b}} 23,22^{\text {b }}$ 1 ; nutrition of, $15^{\mathrm{b}} 27 \mathrm{ff}$, $16^{\mathrm{a}} 3$, $17^{\text {b }} 16,27$; nutritive material of, $27^{\text {b }} 20,34,40,28^{\text {a }} 6,16,19,33$, 36, 38, ${ }^{1} 19$; nutritive principle in, $17^{\text {a }} 25$; odour of, $21^{\text {a }} 19,21^{\text {b }}$ 40; parasitism in, $26^{b} 32-27^{a}$ I ; parts of, $18^{a} 4-19^{a} 41$; perennial, 1 8^{b} IO; products of, $21^{\mathrm{b}} 32 \mathrm{ff}$.; production of leaves and fruit, $27^{\text {a }}$

INDEX

7 ff. ; properties of, $22^{\text {a }} 4$; pyramidal form in, $27^{\mathrm{b}} 16,37$; quick growth in small, $22^{\text {b }} 5$; no respiration in, $16^{b} 26$; rock-p., $26^{\text {a }}$ 20-37; salt water unfavourable to, $24^{b} 35 \mathrm{ff}$. ; sensation in, $15^{\mathrm{a}} 17$, ${ }^{\mathrm{b}_{1}} 9 \mathrm{ff} ., 16^{\mathrm{a}} 5,{ }^{\mathrm{b}} 5,11,17^{\mathrm{b}} 23$; sex in, ${ }^{1} 5^{2} 20,27,17^{\mathrm{a}} 1-^{\mathrm{b}} 13$; shapes of, $27^{\text {b }} 32 \mathrm{ff}$, sleep not found in, $16^{\text {b }}$ $28 \mathrm{ff}, 17^{\text {b }} 20$; snow unfavourable to, $24^{\text {b }} 40 \mathrm{ff}$. ; 'soul' in, $15^{\text {a }}$ I4, $31,{ }^{\mathrm{b}} 29 \mathrm{ff}, \mathrm{I}^{\mathrm{a}} 40, \mathrm{~b}_{4} \mathrm{ff}, \mathrm{I}^{\mathrm{b}} 24$; sulphurous ground, p. growing in, $26^{\mathrm{a}} 2 \mathrm{ff}$; thorny, $27^{\mathrm{a}} \mathrm{I}, \mathrm{b} 6^{\circ}$; variation in, $20^{3} 15$ ff.; warmth, effect of, on, 25^{b} I8ff. ; water, element of, in, $22^{\mathrm{a}} 13,28^{a} 26$, the material of p., 24^{b} I2 ; water-p., $25^{\mathrm{a}} 40 \mathrm{ff}, 26^{\mathrm{b}} 30 \mathrm{ff}$; watery places, p. growing in, $26^{\text {b }} 9$ ff. ; wild, $19^{15} 29,30,21^{\mathrm{a}} 40, \mathrm{~b}_{20}$; without flowers, $28^{\mathrm{b}} 37$; without fruit, $19^{\mathrm{b}} 3 \mathrm{I}$.
Plato, Pl. $15^{a} 21,{ }^{\mathrm{b}} \mathrm{I} 5$.
Pleum, Mir. $40^{2} 13$.
Plumage of birds, colour of, Col. $92^{\mathrm{a}} 24,^{\mathrm{b}} 28,93^{\mathrm{a}} 15,{ }^{\mathrm{b}} 9,94^{\mathrm{b}} 12,97^{\mathrm{a}}$ $33,{ }^{b_{1}} 17,98^{\mathrm{a}} 9,32,99^{\mathrm{a}} 1, \mathrm{I}^{-\mathrm{b}} \mathrm{b}_{5}$; other characters of, $P h .6^{\mathrm{b}}$ II, 20, $12{ }^{\mathrm{b}} \mathrm{I} 6,2 \mathrm{I}$.
Plums, $P l .20^{\text {a }} 38$.
Pluto, Mir. $36^{\text {b }} 2 \mathrm{I}$.
Pods, Pl. $20^{b} 7$.
Point, Mech. on the circumference of a circle, $52^{\text {a }}$ II ; points at the extremities of a rhombus, $54^{\text {b }}$ 16 ff . ; on the radius of a circle, $48^{\mathrm{a}} 16 ; \operatorname{Lin}$. points in lines, $68^{\text {a }}$ $19,21,69^{2} 1,2, b_{2} 5,70^{b} 14-20,23-$ $30,71^{\mathrm{a}} 6$, defined, $7 \mathrm{I}^{8} 17,18$, compared with a 'now' in time, $71^{2} 16-20,{ }^{\text {b }} 4$, terminal p., $70^{2} 21$, ${ }^{\text {b }}$ IO-14; points constitute no magnitude by composition, $71^{\text {a }}$ $21-26$; contact of p. with p. is of the whole with the whole, $71^{2} 27$; a p. not the smallest constituent of a line, $72^{\text {a }} 30-{ }^{\text {b }} 24$, not an indivisible joint, $72^{\text {b }} 25-33$, cannot be subtracted from a line except incidentally, $72^{2} 13-24$; if a line consists of points, p . will be in contact with p., $7 \mathrm{I}^{\mathrm{p}} 4-16$, straight and curved lines cannot exist, $7 \mathrm{I}^{\mathrm{b}} 20-26$; if a line consists of points in contact, the circumference of a circle will touch the tan-
gent at more points than one, $71^{\text {b }}$ 15-20; points in a line must touch or not touch, $7 \mathrm{I}^{\text {a }} 26^{-b} 6$; if a p. touches a line, it is not in contact with it, $72^{\mathrm{a}} 24-27$; a line is not composed of points, $7 I^{\mathrm{a}} 6, \mathrm{~b} 3,19$, $26,72^{3} 12$; the indivisible line is a p. in all but name, $70^{\mathrm{b}} 28-30$; if indivisible lines exist, a p. is also divisible, $7 \mathrm{I}^{\mathrm{a}} 7-9$, a line will exceed another line by a p., $71^{\text {a }} 10-16$.
Poisonous, arrows, Mir. $37^{\text {a }}$ 12-23, 45^{a} 1-9; lizards, $45^{b} 4-7$; mice, $45^{\text {b }} 7$; plants, $31^{\text {a }} 5,35^{b^{b}} 33^{-3} 6^{\text {a }}$ 6 ; snakes, $45^{\text {a }} \mathrm{I}-14$; wasps, $44^{\text {b }} 32-35$; waters, $36^{\text {a }} 30-34,42^{\text {a }}$ II-14.
Polished substances, colour of, Col. $93^{\mathrm{a}} \mathrm{I}^{2} \mathrm{C}^{\mathrm{b}} 3$ 。
Pollen, Pl. $21^{\text {a }} 14$.
Polycritus (historian), Mir. $40^{6} 32$, $43^{a} 2$ (note).
Polypus, Mir. $3^{2{ }^{1}}$ I4.
Pomegranate, $P l .20^{a} 31,41,21^{a} 5$, 25 ; colours of, Col. $96^{\text {a }} 21,27$, 99 9 - 14 .
Pontus (region), Mir. $31^{\text {b }} 23,35^{\text {a }}$ I $5,{ }^{\mathrm{b}} 15$; (a river of Thrace), $41^{\text {a }}$ 28; (? Hellespont), $39^{\text {b }} 3,6$.
Poplars, black, Mir. $35^{\text {b }} 2,36^{\text {b }} 3$.
Poppy, Col. $96^{\text {a }} 26$, 31, bi 5 .
Populonium, Mir. $37^{\text {a }} 31$.
Pores, Col. $93^{\mathrm{a}} 24^{-32}$, $94^{\mathrm{a}} 25^{\mathrm{b}}$ IO; Aud. 28 25, bII ; of plants, see Ducts.
Posidonia (in Italy), Mir. $39^{\text {a }} 30$.
Posidonium (or Posidium), Vent. $73^{a} 16$ (and note).
Possession, cure for, Mir. $46^{\text {b }}$ 22-25.
Potameus (E. wind), Vent. $73^{\text {a }}$ I 3 , 16.

Potter's wheel, Mech. $5^{\text {b }} 20$.
Pottery, composition of, $P l .23^{\mathrm{a}}$ I 8 ; see also Earthenware.
Predicates, accidental, Mech. $56^{\text {a }}$ 35 ; validity of, involves validity of their opposites, $\operatorname{Lin} .68^{a} 3,4$; contrary, $M X G .78^{\text {b }}$ I 7 ff ; negative, $78^{\text {a }} 32$; the same p. may be assigned, to Being and Notbeing, $78^{a} 26$ ff., to the Many and the One, $78^{\text {b }} 3$, 4 .
Pre-existence of things impossible, if they come into being, $M X G$. 74^{2} 5-9.
Premisses, Melissus', criticized, $M X G .75^{\mathrm{a}} 4,20$.
'Prester', a kind of snake, Mir. $43^{3} 31$.
Pride, Ph. $9^{\mathrm{b}} 35, \mathrm{II}^{\mathrm{a}}$ I5, 20, 33, 37, $\mathrm{b}_{27}, 34,13^{\mathrm{a}} 13$.
Problems, mechanical, Mech. $47^{\text {a }}$ 24; natural, $47^{\text {a }} 25$.
Proconnesus, Vent. $73^{3} 20$.
Procrastination, Ph. $13^{\mathrm{a}} 5$.
Propagation of trees, methods of, Pl. $20^{\mathrm{b}} 29 \mathrm{ff}$.
Propria, Ph. $5^{\mathrm{b}} 16-34,6^{\mathrm{b}} 20,8^{\mathrm{b}} 30-$ $9^{\text {a }} 1$.
Proserpine, Mir. $36^{\mathrm{b}} 21$.
Protective coloration, Mir. $32^{\mathrm{b}} 7$ $16,46^{\mathrm{b}}$ 10-15.
Psittacene, Mir. $33^{\text {a }} 1$, 2.
Pubes, Col. $97^{\mathrm{b}} 30$, $98^{\mathrm{a}} 2$.
Pulley, Mech. $51^{b} 19,52^{\text {a }} 5$; large p. more effective than small, $52^{\text {a }}$ 16; why a double p. can raise great weights, $53^{\mathrm{a}} 3^{\mathrm{I}^{-b_{1}}}{ }^{1}$.
Pumice-stone, Mir. $47^{3} 8$.
Purge, Ph. $8^{\mathrm{b}} 23$.
Purple, colour, Col. $92^{\text {a }} 17-29,95^{\text {b }}$ 20, $96^{\mathrm{b}} 25,97^{\mathrm{a}} 5$; dealers in, Mech. $49^{\text {b }} 35$; p.-fish, Col. $94^{\text {a }} 21$, $95^{\mathrm{b}} 11-21,97^{\mathrm{a}} 5$.
Purplish, Mir. $43^{2} 26$.
Pyramidal form, of fruit stones, $P l$. $29^{\text {b }} 13$; of plants and trees, $27^{\text {b }}$ $16,37,28^{\mathrm{a}} 34$; of thorns, $27^{\mathrm{b}} 12$.
Pyriphlegethon, Mir. $39^{\text {a }} 23$.
Pyrrha, Vent. $73^{\text {b }} 22$.
Pythian priestess, Mir. $3^{2 \mathrm{a}}$ 21.
Pythopolis, Mir. $34^{2} 34$.
Quadrant of a circle, Mech. $55^{\text {b }} 14$.
Quadrupeds, Mir. $3 \mathrm{I}^{\mathrm{a}} 20,41^{\mathrm{a}} 8$.
Quail, Col. $98^{\text {a }} 27$; Ph. $6^{\text {b }}{ }^{14}$.
Querulousness, Ph. $12^{\mathrm{a}} 4,13^{\mathrm{a}} 34$.
'Quicker', two senses of, Mech. 48 ${ }^{\text {b }} 6-9$.
Quickness of sense, see Sense-perception.

Racial characters, Ph. 5a ${ }^{\mathrm{a}}$ 26, $6^{\mathrm{b}} \mathrm{I}^{-}{ }^{-}$ $18,12^{a} 13,{ }^{\text {b }} 31$.
Radius, Mech. formed, by a balance, $49^{\text {b }} 24$, by the bars of a capstan or windlass, $52^{\text {b }} 14,20$; longer r., describes larger circle, $50^{\text {b }} 4,52^{\text {b }}$ 33, $34,57^{\text {a }} 32$, displaced more quickly than shorter, $48^{\mathrm{b}} 3 \mathrm{ff}$, $49^{\mathrm{a}} 10 \mathrm{ff}, 55^{\mathrm{a}} 36,52^{\mathrm{b}} 8,9,15-17$ 27,28 , moves a weight more easily than a small, $52^{\mathrm{a}} 17$; natural and unnatural movement
of a r., $49^{\text {a }} 2,3,13 \mathrm{ff}$; simultaneous movement in two contrary directions, $48^{8} 6-10$; two simultaneous displacements of, $48^{\text {b }} 35 \mathrm{ff}$.
Railing or abusiveness, Ph. $8^{a} 33$, ${ }^{\mathrm{b}} 37, \mathrm{II}^{\mathrm{a}} 27$.
Rain, sound of, Aud. $3^{3} 5$.
Rapacity, Ph. $13^{\mathrm{a}} 20$.
Rare, rarefy, rarity, Pl. $22^{\mathrm{a}} 22,32$, $35,36,{ }^{\text {b }} 11$, $16,23^{\text {a }} 1,6,10,19,24$, $26,28,4 \mathrm{I}, 24^{\text {a }} 30,25^{\mathrm{a}} 8,35,27^{\text {b }}$ 11, 22, 36, $28^{\mathrm{a}} 4,28, \mathrm{~b} 39,29^{\mathrm{b}} 35$; $M X G .75^{\mathrm{b}} 26,76^{\mathrm{b}} 3 \mathrm{ff}$., $77^{\text {a }} 2$.
Ratio of division, Lin. $69^{a} 4$.
'Rational', lines, Lin. $68^{\text {b }} 15,18$, 2 I ; square, $7 \mathrm{O}^{2} 4$.
Raven, Col. $99^{\mathrm{b}} \mathbf{1}$; Ph. $10^{\mathrm{a}} 36,12^{\text {b }}$ 12 ; Mir. $37^{\text {a }} 20$; see also Crows.
Ravenswort, Mir. $37^{\mathrm{a}} 20$.
Rectangle, Mech. $49^{\text {a }} 26$; Lin. $70^{\text {³ }}$ 6 ; breadth of, determined by line applied at right angles to the side, $70^{2} 4,5$.
Rectangular figure, Mech. $56^{\mathrm{b}} 27$.
Rectilinear figure, Mech. $51^{\text {b }} 25$.
Red, reddish, Col. ($\pi v \rho \rho \dot{o} s) 94^{3} 24$, $96^{\mathrm{a}} 2,97^{\mathrm{b}} \mathrm{I}, 7,13,25,32,35,98^{\mathrm{a}}$ 14, ${ }^{\text {b }} 14,99^{\mathrm{a}} 5$; Ph. ($\left.\pi v \rho \rho \dot{o ́ s}\right)$ 12 $2^{\text {a }}$
 (épvóós), $12^{2} 21$.
Redness of plants, $P l .0^{20^{\mathrm{b}}} 2 \mathrm{I}$.
Red Sea, $19^{\text {b }} 40$.
Reed (of oboe), $A u d .1^{\text {b }} 33,38,2^{\text {b }}$ 19; (plant), Pl. $20^{\mathrm{a}} 19$.
Reflection of rays, Col. $91^{1}{ }^{1} 5^{-b_{2}}$, $92^{\mathrm{b}} 18,93^{\mathrm{a}} 16,{ }^{\mathrm{b}} 32$.
Reflectiveness, Ph. $13^{\text {a }} 29$.
Reindeer, Mir. $32^{\text {b }} 9$ (note).
Rennet, Mir. $35^{\text {b }}{ }^{\text {31. }}$
Reptiles, Col. $99^{b^{\mathrm{b}}}{ }^{17}$; Mir. $4 \mathrm{I}^{\mathrm{l}} \mathrm{I}$, $43^{2} 28$.
Resemblance, arguments from, $P h$. $5^{\text {b }} 10-6{ }^{\text {a }} 7,{ }^{\text {b }} 29,9^{\text {a }} 3-15$; see also Congruity.
Resin, Pl. $18^{a} 4$.
Respiration, not found in plants and certain animals, $P l .16^{\mathrm{b}} 26$, 27.

Rest, and motion in the circle, Mech. $47^{\mathrm{b}} 20$; a body at r. more difficult to move than one in motion, $48^{3} 3-11$; bodies at r., resistance of (' vis inertiae '), $51^{\text {b }}$ 36 (and note), $58^{a} 8,9$; equality as a cause of r., $57^{\text {b }} 25$; 'being at r.', use of term, $M X G .78^{\mathrm{b}} 29$.

Rhegium, Mir. $35^{\text {b }} 15,43^{\text {a }} 6$.

Rhine, frozen in winter, Mir. $46^{\text {b }}$ 29.

Rhodes, Rhodians, Mir. $40^{\text {a }} 23$; Vent. $73^{3} 4$.
Rhombus, extreme points of, why when moved in two movements, they do not describe equal straight lines, Mech. $54^{\text {b }} 15-55^{\text {a }}$ 27.
'Rhythm', of Empedocles, MXG. $75^{\text {b }} 29$ 。
Right angle, Mech. $57^{\text {b }} 25$; Lin. $70^{\mathrm{b}} 4$.
Ring-dove, Mir. $30^{\text {b }}$ 12, 19.
Road of Heracles, Mir. $37^{\text {a }} 7-11$.
Rock, which ignites when oil is poured on it, Mir. 33 ${ }^{\text {a }}$ 6-9.
Rock-plants, Pl. 26a $20-37$.
Rogues, Ph. $12^{\text {a }}$ 16, $14^{\text {a }}$ 1 ; see also Villany.
Roots of plants and trees, Mech. $49^{\text {b }} 37$; Col. as dyes, $94^{\text {a }} 18 ; P l$. $18^{\mathrm{a}} 15,19,29,30,19^{2} 11,18,20$, $22,26, \mathrm{~b} 4,8,10,13,24,20^{\mathrm{a}} 24$, $25,{ }^{\mathrm{b}} 3 \mathrm{I}, 2 \mathrm{I}^{\mathrm{a}}$ I2, ${ }^{\mathrm{b}} 9,40,26^{\mathrm{b}} 34,28^{\mathrm{b}}$ 11 ; aromatic, $20^{\text {b }} 26$; not found in water-plants, $25^{\text {b }} 5$ ff. ; properties of, $22^{\text {a }} 15$.
Rope, of bed, method of stretching, Mech. $56^{\mathrm{b}} 2 \mathrm{ff}$.; of pulley, $53^{\mathrm{b}} 5$.
Rose, colour of, Col. $96^{2} 22$; odour of, fatal to beetles, Mir. $45^{\text {b }} 2$.
Rosian Mountains, Vent. $73^{\text {a }} 19$.
Rosus, Vent. 73 ${ }^{\text {b }} 17,{ }^{\mathrm{b}} 3$.
Round, why pebbles are, Mech. $52^{\text {b }}$ 29-53 4 .
Rowing, mechanics of, Mech. $50^{\text {b }}$ 10-27.
Rudder, as a lever, Mech. $50^{\text {b }} 31$, $34,51^{b} 12$; how, being small, it can move a large ship, $50^{\mathrm{b}} 28$ $51^{23} 37$.
Rue, Pl. $199^{\text {b }} 11$.
Rushes, Mir. $44^{\text {a }} 27$; see also Reed.
Rust, Col. $92^{\text {b }} 27$.
Rustless, copper, Mir. $34^{2} 2$; iron, $33^{\mathrm{b}} 3 \mathrm{I}$.

Sacrifices to the dead, Mir. $40^{\text {a } 6-~}$ 26.

Saffion, Mir. $40^{\text {b }} 25-31$; s.-colour, Col. $95^{\text {b }}$ I.
Sail of a ship, Mech. $5 \mathrm{I}^{\mathrm{a}} 39,{ }^{\text {b }} 2$, 5, II .
Sallow, Ph. $7^{\mathrm{b}} 7$; see Pale.
Salt, Pl. $22^{\mathrm{a}} 39,23^{\mathrm{b}} 16$; saltness, in deserts, $25^{a} 34$, in pools, $24^{\text {a }}$ 37 , in the sea, $24^{\mathrm{a}} 4 \mathrm{ff}$, ${ }^{\mathrm{b}} 5$, in

Sweat, $24^{\text {b }} 2$; s. water, gives off fresh vapour, $24^{\text {b }} 21 \mathrm{ff}$., heavier than fresh, $24^{\mathrm{a}} 3 \mathrm{I},{ }^{\mathrm{b}} \mathrm{I} 5$, unfavourable to plants, $24^{\text {b }} 35 \mathrm{ff}$; Mir. mined, $44^{\mathrm{a}} 12$; needed by cattle, $44^{\text {b }}$ 19-23; spring of, $44^{\text {b }} 9^{-22}$.
Same thing, the, cannot be present simultaneously in several persons, $M X G .80^{\text {b }} 9 \mathrm{ff} ., 19$.
Sand, $P l .23^{\mathrm{b}} 14,24^{\mathrm{b}} 5,25^{\mathrm{a}} 36$; why formed in the sea, $23^{\mathrm{b}} 17 \mathrm{ff}$., on plains, $23^{\text {b }} 34 \mathrm{ff}$. ; Mir. $3 \mathrm{I}^{\mathrm{b}} 3 \mathrm{O}$, $33^{\mathrm{b}} 24,46^{\mathrm{b}}$ I4.
Sandpiper, Mir. $31^{\text {a }}$ II.
Sandy localities, $P l .23^{a} 2$.
Sanguine, complexion, $P / r_{\cdot} 7^{\text {b }} 32$; temper, $6^{b} 3$.
Sap, Pl. $21^{\mathrm{b}} 40$.
Sardinia, Mir. $38^{8 \mathrm{~b}} 12$.
Sarissa, Mir. $47^{\mathrm{a}} 2$ (note).
Saw, Aud. $3^{\text {a }} 3$.
Scales, of snake, Mir. $46^{\text {b }} 14$.
Scamander, Mir. $46^{6} 34$.
Sciron (NNW. wind), Scironian rocks, Vent. $73^{\text {b }} 19$.
Scopeleus (SE. wind), Vent. $73^{\text {b }} 3$.
Scorpions, frequent near Susa, Mir. $32^{\text {a }} 26-30$; killed by locusts, $44^{\text {b }}$ 23-31.
'Scorpion-fighter', a locust, Mir. $44^{\mathrm{b}} 23-30$; an antidote to scorpion's sting, $44^{\text {b }} 31$.
Scotussae, Mir. $4 I^{\text {b }} 9$.
Scylletinus (N. wind), Scylletium, Vent. $73^{\mathrm{b}} \mathrm{I} 4$.
Scythians, Ph. $5^{\text {a }} 27$; Mir. $32^{\text {b }} 7$, $45^{\mathrm{a}} \mathrm{I}$.
Sea, Col. colour of, $91^{\mathrm{a}} 22,92^{\mathrm{a}} 21$; turns things red, $94^{\text {a }} 24 ; \mathrm{Pl}$. formation of sand in, $23^{b} 17 \mathrm{ff}$.; saltness of, $24^{\mathrm{a}} 4 \mathrm{ff}$., b_{5}; s.-calf, Mir. $35^{\text {b }} 31$; s.-frog, ib. I3; s.shell, see Shell.
Seals, $A u d$. $I^{\text {b }} 4$.
Seaweed, Mir. $44^{\text {a }} 27$.
Seeds, $P l$. $17^{\text {a }} 27,32,18^{\text {a }} 33,34$, $19^{\text {a }} 4 \mathrm{I}, 2 \mathrm{o}^{\mathrm{a}} 38 \mathrm{ff} .,{ }^{\mathrm{b}} 6,30,32,21^{\mathrm{b}}$ $33,24^{\text {b }} 10,26^{\text {a }} 39,28^{\text {a }} 18$; good and bad, $2 I^{\text {a }} I-I I$.
Self-will, $P h .^{11^{\mathrm{b}}} 35$.
Sensation, sense, sense-perception, Aud. $I^{\mathrm{b}} 30,2^{\mathrm{a}} 14,3^{\mathrm{a}} 6,3^{\mathrm{b}} 35-4^{\mathrm{a}}$ 6 ; of colour, $\mathrm{I}^{\mathrm{b}} 24,3^{\mathrm{b}} 39$, and light, $2^{\text {a }} 12$; of heat, $2^{a} 13$; of touch, $3^{\text {b }} 14$; Col. of colour, $93^{\text {b }}$ 29, $94^{\mathrm{a}} \mathrm{I}, 95^{\mathrm{b}} 4 ; P h$. and mobility of the head, $11^{2} 6-10$; as related
to blood-flow and size of body, $13^{\text {b }} 30-35$; Pl. in animals, 16^{a} 12 ; in plants, $15^{a} 17,{ }^{\text {b }} 19$ ff., 16^{a} $5,{ }^{5}, 11,17^{\text {b }} 23 ;$ Lin. objects of, $68^{a}{ }^{18} ; M X G$. fallibility of, 74^{b} 6, Io ff. ; see also Hearing, Sight.
Seps, a kind of snake, Mir. $46^{\text {b }}$ II. Seriphos, Mir. $35^{\text {b }} 3$.
Serpents, Mir. swallow their slough, $35^{2} 28$; in Cyprus, a kind harmless in winter, $45^{\text {a }}$ 10-14; in Lacedaemon, used for food, $32^{\text {a }}$ 17-21 ; in Mesopotamia, a kind that distinguishes strangers, 45^{b} $8-15$; in Thessaly, destroyed by storks, $32^{\text {a }} 14^{-17}$, a kind that changes colour, 46^{b} 10-17, the sacred snake, $45^{b} 16-22$, how charmed and killed, $45^{\text {b }}$ 23-32 ; see also Viper.
'Serpent-necked', the Lacedaemonians why so called, Mir. $32^{\text {a }}$ 18-21.
Sex, comparison of the sexes, Ph. $6^{\mathrm{b}} 32-34,9^{\mathrm{a}} 30^{-\mathrm{b}} 14,14^{\mathrm{a}} 7-9$; P l. in animals, $17^{\mathrm{b}} 2 \mathrm{ff}$; female s. sometimes absent, $16^{a} 18$; in plants, $15^{a} 20,27,17^{\text {a }} \mathrm{I}^{\mathrm{b}} \mathrm{I} 3$; see also Female, Male.
Shadow, Col. $9 \mathrm{I}^{\mathrm{a}} 20,93^{\mathrm{a}} \mathrm{I}-5,{ }^{\mathrm{b}} 16$; Mir. hyaena paralyses by stepping on a man's s., $45^{\text {a }} 24-27$.
Shapes, of animals, Pl. $28^{\mathrm{a}} 24$; of plants, $27^{\mathrm{b}} 32 \mathrm{ff}$.
Sheep, Col. $97^{\mathrm{a}} 34,98^{\mathrm{a}} 6 ;$ Ph. $6^{\text {b }}$ 8, $13^{\text {b }} 4$; Mir. colour of Euboean, $4^{6^{\mathrm{b}}} 36-38$.
Sheet, of a sail, Mech. $5_{1}{ }^{\text {b }} 8$.
Shell, of fruit, Pl. $18^{\mathrm{a}} 33,20^{\mathrm{b}} 12$; of seed, $19^{2} 41$; s.-fish, sea-s., Col. $99^{\mathrm{b}}{ }^{17}$; Pl. 16a 10 ; Mech. $52^{\mathrm{b}} 30$; see also Purple-fish.
Ship, Mech. 50^{b} 10, 18 ff., $55^{12} 27,30$.
Shoots, Pl. $19^{\mathrm{a}} 18,21^{\mathrm{b}} 9 \mathrm{ff}$.
Short objects, easier to carry than long, Mech. $57^{\mathrm{a}} 23 \mathrm{ff}$.
Shoulder, Aud. $4^{\mathrm{b}}{ }^{14}$; Ph. $7^{\mathrm{a}} 34$, ${ }^{\mathrm{b}} 14,15,21,30,8^{\mathrm{a}} 21,9^{\mathrm{b}} 27,32$, $10^{\text {b }} 29,35-11^{a} 5,12^{b} 20,13^{\text {a }} 11$, 12, $14^{\text {b }} 5$; method of carrying long objects on, Mech. $57^{\mathrm{a}} 5 \mathrm{ff}$., 23 ff .
Sibyl of Cumae, Mir. 38 ${ }^{\text {a }}$ 5-10.
Sicily, Mir. $33^{\mathrm{a}} 21,34^{\mathrm{b}} 3,8,36^{\mathrm{a}} 28$, ${ }^{b_{1}} 3,40^{a} 2, b_{2}, 25,32,43^{a} 1,5$, $45^{\text {b }} 4,47^{\text {a }} 3$; Vent. $73^{\text {a }} 25$, ${ }^{\text {b }} 2$.

Sicyon, Mir. $34^{\text {b }} 23$.
Sides, of the body, $P h .7^{\text {a }} 32,{ }^{\text {b }} 16$, $8^{\mathrm{a}} 20,9^{\mathrm{b}} 7,28,10^{\mathrm{b}} 12-23$; of a parallelogram, Mech. $56^{\text {b }} 22 \mathrm{ff}$; of a rectangle, Lin. $70^{\text {a }} 4$; of a rhombus, Mech. $54^{\text {b }} 19 \mathrm{ff}$.
Sigeum, Mir. $40^{\text {a }} 15$.
Sight, $M X G .80^{\text {b }}$ I5; does not recognize sounds, $80^{\mathrm{b}} \mathrm{J}$; in God, 77^{a} $36,78^{\mathrm{a}} 4,9,13$; objects of, exist because they are cognized, 80^{a} I3; see also Eyesight, Vision.
Signet-rings, Mir. 35° 30.
Signs (physiognomic), selection of, see Physiognomy, methods of ; sources of, Ph. $6^{\mathrm{a}} 27-36,14^{\mathrm{b}} 3-9$.
'Silk-worm' (a musical instrument), Aud. $\mathrm{o}^{\text {b }} 25$.
Silliness, Ph. $12^{\text {b }} 27$.
Silver, Col. $93^{\text {a }} 18$, by; Mir. $33^{\mathrm{b}} 3 \mathrm{~B}^{\text {, }}$ $37^{\text {b }} 3$; in Iberia, $37^{\text {a }} 24-29$, common in Tartessus, 44 ${ }^{\text {a }} 17$-24.
Similar, $P l$. division by s. parts, 18^{a} 22-29; Mech. parallelograms, $4^{8^{\mathrm{b}}} 20,54^{\mathrm{b}} 29,30$; triangles, $51^{\text {B }}$ 24; MXG. $77^{\text {a }} 15 \mathrm{ff}$., b 23,25 , $80^{b} 12,14$; ($=$ homogeneous), $74^{\text {a }}$ $13,{ }^{\mathrm{b}} 8,76^{\mathrm{a}} 38, \mathrm{~b}_{2}, 36$; the term explained, $76^{\mathrm{a}} \mathrm{I} 3-18$; God is s . in every part, $77^{\mathrm{a}} 37-39,{ }^{\mathrm{b}} 19$, this view criticized, $78^{3} 3-7$.
Simple, Lin. $68^{\text {a }} 19$; line, $70^{\text {b }} 28$; magnitude, $68^{a} 6,19$; unit, $68^{a} 1$, 8, 17.
'Simple', Lin. $68^{\text {b }} 13,69^{\text {a }} 14,21$, $70^{\mathrm{a}} 12,16,{ }^{\mathrm{b}} 9$; contact of 'simples ', $71^{\text {b }} 7,23$; ' simples' added together will not produce an increased total magnitude, $70^{\text {a }} 22$; 'simples', admit of only one mode of conjunction, $70^{2} 19$; a ' s.' has no dimension, $71^{\text {b }} 2$; two'simples' will not form a continuous quantum, $70^{\mathrm{a}} 23$, or magnitude, $71^{\text {b }} 3$. Sinope, Vent. $73^{\text {a }} 24$.
Sinti, Mir. $41^{2} 27$.
Sipylus, Mir. $46^{\text {b }} 3$.
Sirens, isles of the, Mir. $39^{2} 26$; temples of the, $39^{\text {a }} 30$.
'Sistros', secures against demons, Mir. $46^{6} 35$.
Sithonia, Mir. $32^{\text {b }} 27$ (note).
Sitting position, movements made in rising from, Mech. $57^{\text {b }} 22 \mathrm{ff}$.
Skin, colour of, Col. $97^{\text {a }} 34,{ }^{\text {b }} 12,18$, $22,98^{\text {b }} 21$; other characters of, $P h .6^{\mathrm{a}} 30,{ }^{\mathrm{b}} 5,7^{\mathrm{b}} 18,8^{\mathrm{a}} 18,23$; of
animals, $P l .1^{\text {a }} 19 ;$ see also Complexion.
Slate, Col. $93^{\mathrm{a}} 20$ (note).
Slaves as rulers, Mir. $38^{\text {a }}$ I-4.
Slave-traffic to Balearic Isles, Mir. $37^{a} 34^{-b} 3$.
Sleep, cause of, in animals, $P l .16^{\text {b }}$ 33 ff ; defined, $16^{\mathrm{b}} 30,38$; fruits causing, $22^{2} 7$; not found in plants, $16^{\text {b }} 28$.
Sling, Aud. $0^{\text {b }} 13$; Mech. $52^{\mathrm{a}} 38$, $\mathrm{b}_{3}, 5,8,10$; marksmanship of the Ligurians with, Mir. $37^{\mathrm{b}} 16$.
Slowness, Ph. $12^{\text {a }} 19,13^{\text {b }} 10$.
Slyness, Ph. 8a 27-29.
'Small', as a predicate, $\operatorname{Lin} .68^{3} 4$, $5,9,{ }^{b} 22,24,69^{a} 1,3,6,11,14$; a point is not the smallest constituent of a line, $72^{\mathrm{a}} 30-\mathrm{b}_{24}$; 'smallest'as a predicate, $72^{2} 33,{ }^{\mathrm{b}} 5$.
Smallness of soul, or meanness, $P h$. $8^{\mathrm{a}} 30,10^{2} 7, \mathrm{II}^{\mathrm{b}} 8$.
Smelting, iron, Mir. $33^{\text {b }} 25-31$; copper, $35^{\text {a }}$ II.
Smoke, Col. $9 \mathrm{I}^{\mathrm{a}} 7, \mathrm{~b}_{21}, 22,92^{\mathrm{b}} 27$, $93^{b} 5,94^{\text {a }} 22$.
Snail, Mir. $40^{\text {b }} 20$.
Snakes, see Serpents.
Snow, its effect on plants, Pl. $24^{\text {ax }}$ 40-25 21.
Soda, Mir. $34^{\text {a }} 3$ 1.
Softness of character, Ph. $6^{\mathrm{b}} 25,8^{\text {a }}$ $10, \mathrm{IO}^{\mathrm{a}} 19,27,37, \mathrm{IO}^{\mathrm{b}} 2,8,11,13$, 27, 37.
Solid, $\operatorname{Lin} .72^{\text {b }} 9$; the ideal s., $68^{\text {a }}$ 13; solids divisible in bulk and distance, $69^{2} 25$; a s. divided at a plane, $70^{\text {b }} 32,71^{\mathrm{a}} 2$; made up of planes, $72^{\mathrm{a}} 8,29$; if there are indivisible lines there must also be indivisible solids, $70^{\text {b }} 30 \mathrm{ff}$.; the point as part of a s., $72^{a} 7$.
Solstices, Mir. $35^{\text {a }} 22,25$.
Somnolence, $P h .8^{\mathrm{b}} 7,11^{\mathrm{b}} 17$.
Sophist, Ph. 8^{a} I6.
Sophisstry, sophistical reasoning, Mech. $56^{\text {a }} 33 ; \operatorname{Lin} .69^{\mathrm{b}} 8$, I5.
Sore-throat, $A u d .4^{\text {a }} 18$.
Soul, $P h .5^{\mathrm{a}} 6-24,{ }^{\text {b }}{ }^{1} 3,6^{\mathrm{a}}{ }^{1} 3,8^{\mathrm{b}}$ II$35,9^{2} 34,10^{2} 7$; in plants, $P l$. $15^{a} 14,3 \mathrm{r}, \mathrm{b}_{29} \mathrm{ff}$., $16^{\mathrm{a}} 4 \mathrm{o}, \mathrm{b}_{4} \mathrm{ff}$., $17^{b} 24$.
Sounds, Aud. caused by impact, $0^{\text {a }}$ I-16 (see also Impact); conflict of, I^{b} 15-20; concord of, $3^{\text {b }}$ $40-4^{2} 8$; deflection of, $2^{2} 27-37$; localization of, $I^{a} 21^{-b} 1$; move-
ment of, in straight line, $2^{2} 30$; qualities of-articulate)(inarticulate noises, $\mathrm{o}^{\mathrm{a}} \mathrm{I}, \mathrm{I}^{\mathrm{a}} 36,2^{\text {b }} 39$; clear)(dim, $\mathrm{O}^{\mathrm{a}} 14-\mathrm{I} 5, \mathbf{1}^{\mathrm{b}} 22-39$, $2^{\text {b }} 9$; cracked, $4^{\text {a }} 33^{-\mathrm{b}} 8$; deep) (shrill, $3^{\text {b }} 3 \mathrm{I}$; distinct, $\mathrm{I}^{\mathrm{b}} 9-20$; even, $2^{\mathrm{b}} 12$; hard)(soft, $2^{\text {b }} 39^{-}$ $3^{\mathrm{a}} 4,3^{\mathrm{a}}{ }^{1} 5^{-\mathrm{b}} 2$, 29 ; piping, $4^{\mathrm{a}} 28$ 32 ; pure, $\mathrm{I}^{\text {b }} 28$; rasping, $2^{\text {a }} 39$; rough)(smooth, $2^{b} 12,3^{b} 10-18$; solid, $1^{\mathrm{b}} 28,2^{\mathrm{b}} 12,3^{\mathrm{b}} 28$; spongy, $3^{\text {b }} 28$; thick) (thin, $3^{\text {b }} 23$-26, 4^{a} 9-17; perception of, $M X G$. $80^{\text {b }}$ I ff.; see also Voice.
'Sound-minded stone', causes madness, Mir. $46^{\text {b }} 27$.
Sourness in fruit, Pl. $29^{\mathrm{b}} 5 \mathrm{ff}$.
South wind, Mir. $31^{a} 16$, 17 ; Vent. $73^{\mathrm{b}} 8$.
Space, Zeno's argument about, $M X G .79^{\mathrm{b}} 25$.
'Speaker', of oboe, Aucl. $4^{\text {a }}$ I4.
Species) (genus, Pl. $16^{a} 13 \mathrm{ff}$; change of, in plants, $21^{\text {a }} 26 \mathrm{ff}$.
Spectres, charm against, Mir. $46^{\text {a }}$ 37.

Speech, physiognomic inferences from manner of, $P h .7^{\text {b }} 34,13^{\mathrm{a}} 35$; see also Voice.
Sphere, $M X G .76^{\mathrm{a}} 8,78^{\mathrm{b}} 9$.
Spherical, bodies, why easily moved, Mech. $51^{\text {b }} 15-52^{\mathrm{a}} 13$; nature of the s., $M X G \cdot 7^{\text {a }} 21-24$; God is s., $77^{\text {b }}$ I-3, 19, $78^{8 \mathrm{a}} 20$, this view criticized, $78^{\mathrm{a}} 7-15$; if incorporeal, God is not s., $79^{2} 7$.
'Spinos', ignites readily, Mir. $32^{\text {b }}$ 29, 33^{2} 23-27.
Spit, Mir. $35^{\text {a }} 18$.
Springs, cold, Mir. $41^{\text {a }} 23,45^{\text {a }} 35$; fatal, $42^{\mathrm{a}} \mathrm{II}-14$; healing, $41^{\mathrm{b}} 9-$ 14; hot, $39^{\text {a }} 22$; intermittent, $34^{\mathrm{a}} 34^{-\mathrm{b}} 2,{ }^{\mathrm{b}} 4^{-11}, 47^{\mathrm{a}} 4$; in testing perjury, $46^{2} 1-5$; of brine, $44^{\text {b }} 9-22$; of oil, $4{ }^{\text {a }} 15$; of pitch, 42^{b} I6.
Square, Lin. 70^{a} I2 ff ; s. constructed of 'simples', 70^{2} II ; a s. is divisible, $70^{\mathrm{b}} 2 \mathrm{I}$; squares drawn on 'rational' lines are commensurate, $68^{\text {b }} 15$; the ideal s., $68^{\text {a }}$ 12 ; on the indivisible line, $70^{2} 6$, 15 ; 'rational' s., $70^{\text {a }} 4$; unit s., $68^{\text {b }} 16,20$.
Squill, $P l .20^{2} 25$.
Stags, hide when they have shed their antlers, Mir. $30^{b} 23-31^{a} 3$;
bury their right antler, $35^{\text {b }} 28$; other references, $32^{\text {b }} 16,40^{b} 21$.
Stalactites, Mir. $34^{\text {b }} 31$-34.
Stammering, Aud. 4 ${ }^{\text {b }}$ 26-39.
Star-lizards, where poisonous, Mir. $45^{\mathrm{b}} 4^{-7}$.
Stars, influence of, on plants, $P l$. 24^{b} II.
Statues, Aud. $2^{\text {a }} 38$; of Athena by Phidias, Mir. 46² 17-21 ; of Bitys, 46a 22-24; copper s. in Pheneus and Sicyon, $34^{\text {b }} 23$-25; s. by Daedalus in the Amber Isles, $36^{6} 15$.
Steelyard, why it weighs large masses with a small counterpoise, Mech. $53^{\text {b }} 25-54^{\mathrm{a}}$ 15.
Stem of plants and trees, $P l .19^{2} 18$, $23,{ }^{6} 5,10,12,24$.
Stern of a ship, Mech. $51^{\text {² }} 5,11,31,35$.
Stimulus and sensation, $A u d$. $\mathrm{I}^{\text {b }} 30$, $2^{\text {a }} 14,3^{\text {b }} 35-4^{\text {a }} 6$.
Stone, Col. polished, $93^{\text {a }} 20$; Aud. s.-throwing engine, $\mathrm{o}^{\mathrm{b}} 13$; Mir. Iapygian, lifted by Heracles, $38^{\text {b }}$ I; stones as charms, $46^{\text {a }} 32-34$, ${ }^{\mathrm{b}} 3-6$; burning, $32^{\mathrm{b}} 9,33^{\mathrm{a}} 23-27$, $4 \mathrm{I}^{\mathrm{a}} 29-32$; causing madness, 46^{b} $27,47^{\text {a }} 5$; changing colour, $47^{\text {a }} 9$; curing possession, $4^{6{ }^{b}} 22-25$; fireproof, $33^{\text {b }} 27$; Pl. $22^{2} 39$; 'concoction' in, $22^{2} 28,26^{2} 27$; floating stones, $23^{a} 41 \mathrm{ff}$., their formation, $23^{\text {b }}$ II ; no rarity in, $23^{\text {a }} 6$; fruit-s., $29^{\text {b }} 13$; Lin. a s. has no joints, but it has points, $72^{\text {b }} 32$; see also Pebbles.
Storks, exterminate serpents, Mir. $32^{a} 14^{-1} 7$.
Straight line, Mech. $48^{\text {b }}$ 13, 27, 33, $54^{\text {b }} 17,5^{8^{a}} 1$; the mean between the concave and the convex, $4^{8^{a}}$ 1; Lin. $7 \mathrm{I}^{\mathrm{b}} 1 \mathrm{I}, 21 \mathrm{ff}$; definition of, $69^{b} 32$; any three s. lines can be combined in a triangle, $70^{8} 8$.
Strangers distinguished, by birds, Mir. $36^{\text {a }} 7-14,42^{2} 35$; by dogs, $40^{\mathrm{b}} 5$; by snakes, $45^{\mathrm{b}} 8-15$.
Strangury, cure for, Mir. $31^{\text {b }}$ I-4.
Streams, origin of, $P l .22^{\mathrm{b}} 25 \mathrm{ff}$.
Strength of character, $P h .10^{\text {a }} 16$, $25,29,36, b_{2}, 7,10,13,24,26$, 35, $1 \mathrm{I}^{10} \mathrm{II}$ 。
Stringed instruments, $A u d . o^{\mathrm{a}} 6,1^{\text {b }}$ $17,2^{\text {b }} 14-18,3^{\text {a }} 28-^{\text {b }} 2,3^{\text {b }} 23-38$, 4^{a} 17, 28, 38.
Strymon, Vent. $73^{\text {b }} 18$.

Strymonias (NNW. wind), Vent. $73^{\text {b }} 17$.
Stucco, colour of, Col. $91^{\text {b }} 27,94^{\text {b }} 32$.
Stupidity, Ph. $8^{\mathrm{b}}{ }_{2}, 1 \mathrm{I}^{\mathrm{b}} 29$.
Substrata, Lin. $69^{\text {b }} 1$.
Subterranean, dwelling of Sibyl, Mir. $38^{\text {a }} 6$; passage, $36^{\text {b }} 20$.
Suckers, Pl. 19 ${ }^{3} 25,20^{2} 22$.
Suffocation in mines, Mir. $34^{2} 26$.
Sulkiness, Ph. 7^{a} 5, 8a ${ }^{\text {17-1 }} 9$.
Sulphur, Pl. $26^{\mathrm{a}} 2,9$; Mir. $42^{\mathrm{b}} 22$.
Sun, Col. colour of, yellow, $91^{2} 4$, $93^{\text {a }} 14$; s.-light in colour-blends, $92^{\mathrm{a}} 10, \mathrm{~b}_{23}, 93^{\mathrm{b}} 17,94^{\mathrm{b}} 28,95^{\mathrm{a}} 11$, $99^{\mathrm{b}} 5 ; P l$. 16³ 23 ; effect on plants, $17^{\mathrm{a}} 26,26^{\mathrm{b}} 5 \mathrm{ff} ., 36,27^{\mathrm{a}} 20$, $21,32,30^{\mathrm{b}} 2$.
Sunrise and sunset, colours at, Col. $92^{a} 18$.
Supremacy, of God, MXG. $77^{\text {a }}{ }^{24-}$ 33, $78^{\text {a }} 9$, 13; Xenophanes' view criticized, $77^{\text {b }} 28-78^{\text {a }} 4$.
Susa, Mir. $32^{\text {a }} 26,38^{\text {a }} 23$.
Swallow, Col. $98^{\text {a }} 27,99^{\text {b }} 12$.
Swans, on Avernus, Mir. $39^{8} 24$.
Sweetness in fruit, cause of, $P l .29^{\text {b }}$ I ff.
Swine, $P h$. $11^{\mathrm{a}} 24,30,{ }^{\mathrm{b}} 30,12^{\mathrm{b}} 28$; with solid hoofs, Mir. $35^{\text {a }} 35,41^{\text {b }}$ 6 ; see also Boar, wild.
'Swipe' for drawing water, Mech. $57^{\text {a }} 34 \mathrm{ff}$.
'Sword-stone', causes madness, Mir. $47^{8} 5$.
Sybaris (River), Mir. $40^{\mathrm{a}} 23,46^{\mathrm{b}}$ 33, 34 ; (town), Sybarite, $38^{\mathrm{a}} 15$, $26,40^{2} 15$.
Sycamore, Pl. $20^{2} 21$.
Sympathy of body and soul, $P h .8^{\text {b }}$ 1 1-27.
Symplegades, Mir. $39^{\text {b }} 14$ (note), 29 . Syracuse, Mir. $34^{\text {b }} 5,47^{\text {a }} 3$.
Syria, Pl. $21^{\text {a }} 34$; Mir. $31^{\mathrm{a}} 22,43^{\mathrm{b}}$ $9,45^{\mathrm{a}}$ 28, b8, I4 ; Vent. $73^{\text {b }} 2$.
Syrian Gates, Vent. $73^{\mathrm{a}} 18$.
Syriandus (E. wind), Vent. $73^{\text {a }} 17$.
Tablets, Mir. $34^{\text {b }}$ 12-15.
Tail, Ph. $8^{\text {b }} 35$.
Tamarisk, $P l .20^{a} 8,27^{a}$ II.
Tangent, Mech. $49^{\text {a }} 17$; Lin. $71^{\text {b }}$ 16, 17.
Tangential direction, Mech. $52^{\text {a }} 12$.
Tarandos, Mir. $32^{\text {b }} 9$.
Tarentum, Mir. $32^{\text {b }} 21,40^{\mathrm{a}} 6$; Vent. $73^{\text {b }} 14$.
Tares, Pl. 21² 32.

Tartessus, Mir. $44^{\text {a }}$ I7.
Taulantians, Mir. $32^{\text {a }} 5,42^{\text {b }} 14$.
Taurus, Vent. $73^{\mathrm{a}} 18$.
Tawny, see Yellow.
Taÿgetus (Mt.), Mir. $46^{\text {b }} 7$.
Teeth, Ph. $\mathrm{II}^{\mathrm{a}} 23$; see also Dentist, Tooth-extractor.
Temper, $P h .9^{2} 35-38$, II $^{\text {b }} 3$; see also Anger, Ferocity, Hot temper.
Temples (of the head), Col. $98^{\mathrm{a}} 22$; Ph. $8^{\mathrm{b}} 6,12^{\mathrm{s}} 28,{ }^{\mathrm{b}} 27$; (buildings), Mir. of Achilles in Tarentum, $40^{\text {a }}$ II; of Apollo, in Croton, $40^{8} 21$, in Sicyon, $34^{\text {b }} 24$; of Artemis, in an Adriatic island, 39^{b} 18, in Peucetia, $40^{\mathrm{b}} 18$; of Athena, in Daunia, 40^{b} 2, in Gargaria, 40^{a} 27-35; of Demeter at Eleusis, $43^{\mathrm{b}} \mathrm{I}$; of Diomede in Diomedeia, $36^{a} 8$; of Dionysus in Crastonia, $42^{\text {a }} 18$; of Zeus, at Pedasa, $44^{\mathrm{b}} 6$, in Peucetia (?) $40^{\mathrm{b}} 24$.
Tendrils, $P l .18{ }^{\text {a }} 15$.
Tenos, Mir. $32^{\text {b }} 26,45^{\text {b }} 21$.
Teos, Vent. $73^{2}{ }^{20}$.
Terebinth, Pl. $20^{\mathrm{b}} 4 \mathrm{I}$.
Terror, see Fear.
Thasian wares, Mir. $39^{\text {b }} 7$.
Theatre, Mir. $32^{\text {b }} 18$.
Thebanas (NE. wind), Vent. $73^{\text {a }} 9$, ${ }^{b_{2}}$.
Thebe, Vent. $73^{\text {a }} 9$.
Thebes, Mir. $43^{\text {b }} 21$.
Themis, Mir. $38^{\text {a }} 24$.
Theodorus (the R. Douro), Mir. $33^{\mathrm{b}} 15$.
Thermal, lake, Mir. $36^{6} 30-34$; spring, $39^{\mathrm{a}} 22$.
Thespiadae, Mir. $38^{\text {b }} 16$.
Thessaly, Mir. $32^{\text {a }} 14,41^{\text {b }} 9,42^{\text {b }}$ Io, $45^{b} 16,21,46^{b} 10$.
Thievishness, Ph. 10 ${ }^{\text {a }} 8$.
Thighs, Ph. $9^{\text {b }} 7,29,10^{\mathrm{a}} 4,35-37$, II ${ }^{8}$ I ; position of, in rising from a sitting posture, Mech. $57^{\text {b }} 23$, 24, 33, 34 .
Things are not words, $M X G .80^{\text {b }}$ 18.

Thirst resulting from snake-bite, Mir. $46^{\text {b }} 15$.
Thole-pin, Mech. $50^{\text {b }}$ 11, 16, 22, 25, $27,51^{18} 18$.
Thorns, Pl. 20 $0^{\mathrm{z}} 20$; their form, $27^{\text {b }}$ 12 ; their origin, $27^{\text {b }} 6 \mathrm{ff}$; of Cean pear, poisonous, Mir. $45^{\text {a }}$ I5
Thorn-tree, $P l .19^{\mathrm{b}} 8$.
Thorny plants, $P l .27^{\mathrm{a}} \mathrm{I}$.

Thought, Lin. contact of, with objects, $68^{\text {b }} 1$, $69^{\text {a }} 31$; movement of, quickest kind of movement, $68^{2} 25$, does not involve continua and substrata, $69^{2} 33$; objects of, 68^{a} I7.
Thrace, Thracians, Ph. 5a 27 ; Mir. $31^{\mathrm{b}} 29,32^{\mathrm{b}} 28,33^{\mathrm{a}} 24,41^{\mathrm{a}} 28,{ }^{\mathrm{b}} 15$, $42^{\mathrm{a}} 5$, 11 ; Vent. 73^{b} 17.
Thracias (NNW. wind), Vent. $73^{\text {b }}$ 17.

Threshing-floors, Mir. $35^{\text {b }} 9,42^{\text {a }} 7$; Vent. $73^{\text {a }} 15$.
Throat, Aud. $4^{\text {b }} 26$.
Thrown objects, travel a distance proportionate to the strength of the thrower, Mech. $58^{\mathrm{a}} 24^{-\mathrm{b}} 4$; why they eventually stop, 58^{a} I316.

Thunder, $A u d .3^{a} 3$.
Thunderbolt, Mir. $36^{\text {b }} 2$.
Thurium, Mir. $46^{\text {b }} 33$.
Thyme, $P l .21^{\mathrm{a}} 3 \mathrm{I}$.
Tides, in Straits of Messina, Mir. $34^{\mathrm{b}} 3$.
Tigris, Mir. $46^{\mathrm{a}} 3 \mathrm{I}$.
Tiller, Mech. $50^{\text {b }} 30,51^{\text {a }} 35$.
Timaeus, the Locrian, Mir. $47^{\text {b }} 7$.
Time, Lin. composite times consisting of 'simples', $70^{\text {b }} 9$; infinite and finite, $69^{8} 29$; theory that it consists of discrete elements, $71^{\mathrm{a}} 16-20$, denied, $71^{\mathrm{b}} 4$.
Timidity, Mir. $46^{\text {b }} 35$; see also Cowardice.
Tin, Col. $94^{\text {b }} 9$; Mir. $35^{\text {a }} 10$, $36^{\text {a }}$ 26 ; Celtic t. melts in cold, $34^{2} 7$ 11.

Tincture, coloration by, Col. $91^{\text {a }} 5$, $93^{\mathrm{a}} 24^{-\mathrm{b}} 2,94^{\mathrm{a}} 16^{-\mathrm{b}} 11,95^{\mathrm{a}} 26,^{\mathrm{b}} 5_{-}$ $20,96^{\mathrm{a}} 23,97^{\mathrm{a}} 3^{-8}$.
Tlepolemus, Mir. $40^{2} 24$.
Tmolus (Mt.), Mir. $47^{\mathrm{a}} 8$.
'To Be')('Not-to-Be', MXG. 79 ${ }^{\text {a }}$ 25 ff , b $\mathrm{b}_{2} \mathrm{ff}$.
Toes, Ph. 10 ${ }^{\text {a }}$ 20-24.
Tomb, miraculous, at Lipara, Mir. $3^{8 \text { b }} 30-39^{\text {a }} 11$; of Deïope, $43^{\text {b }} 3$.
Tongue, A ud. I $^{\text {b }} 8,4^{\text {b }} 28$.
Tooth-extractor, mechanics of, Mech. 54 ${ }^{\text {a }}$ 16-31.
Tortoise, Mir. $31^{\text {a }} 27-3 \mathrm{I}$.
Touch, sense of, Aud. $3^{\text {b }} 14$.
Touchstone, Col. $93^{\text {b }}$ I.
Trade, Mir. $36^{\text {b }} 30-37^{\text {a }} 6,30-35$, $39^{a} 34^{-b} 9,44^{\text {a }}$ I $7-34$.
Trance, tale of a, Mir. $39^{\text {a }} 2-1$ I.

Translucent medium, Col. $93^{\text {b }} 34^{-}$ $94^{\mathrm{a}} 15$.
Transplantation, $P l .20^{\text {b }} 32$; effects of, $21^{a} 30 \mathrm{ff}$.
Transposition, of the One, impossible, $74^{\text {a }} 20$, possible, $76^{\text {b }} 38 \mathrm{ff}$.
Trapezus, Mir. $3 \mathrm{I}^{\mathrm{b}} 23$.
Treacherousness, $P h$. II $^{\text {a }}{ }^{1} 7$.
Tree-honey, Mir. $31^{\text {b }} 27$.
Trees, $P l$. aromatic, $20^{\text {b }} 26$; barren, fertilization of, $21^{2} 12$; colour in, $27^{\mathrm{b}} \mathrm{I} 7 \mathrm{ff}$. ; defined, $19^{\mathrm{b}} 3$; a division of plants, $19^{2} 41$; distinguishing, methods of, $21^{\text {b }} 27$; Egyptian, $19^{a} 12$; garden-t., $19^{b} 36$, $21^{2} \mathrm{I}, 24$; greenness in winter, reason of, $29^{8} 25$; maturation of, $29^{\text {b }}$ 18-23; production of leaves and fruit in, $27^{\mathrm{a}} 7 \mathrm{ff}$. ; propagation of, $20^{\text {b }} 29 \mathrm{ff}$.; varying productiveness of, $21^{\text {b }} 12 \mathrm{ff}$. ; wild $t_{\text {., }} 19^{\text {b }}$ $37,21^{\mathrm{a}} \mathrm{I}$.
Triangle, Mech.similar triangles, $51^{\text {a }}$ 24 ; Lin. a t. can be constructed of any three straight lines, $70^{\mathrm{a}} 8$; if formed of three indivisible lines will be equilateral, $70^{8} 9$, 10 ; in an equilateral t. a perpendicular from the apex bisects the base, 70^{a} II ; the ideal t., $68^{a} 12$.
Tridents, for catching fish, Mir. 37^{b} I5.
Tripolis, Vent. $73^{\text {a }} 13$; gulf of, $73^{\text {a }} 19$.
Triptolemus, Mir. $43^{\text {b }} 4$.
Troy, Trojans, Mir. $40^{\text {a }}$ 14, 16, b8.
Trumpet, $A u d .1^{\text {a }} 28,3^{\text {a }}$ 24-26.
Truth)(falsehood in cognition, $M X G .80^{a}$ Io ff.
Tunny, where frequent, Mir. $44^{\text {a }}$ 24-34.
Turpentine, Mir. $37^{\text {a }} 33$.
Turtle-dove, Mir. $30^{\text {b }}$ I3.
Twigs, Pl. $18^{\text {a }}$ 12, 16, $19^{\text {a }} 39$.
Twins and triplets, common in Umbria, Mir. $36^{8} 23$.
Tyana, Mir. $45^{\text {b }} 33$.
Tydidae, Mir. $40^{2} 7$.
Tyrrhenian, see Etrurian Sea.
Tyrrhias, in Cyprus, Mir. $33^{\text {a }} 31$.
Umbrians, Mir. $36^{6} 19$.
Ungenerated, $M X G .75^{\mathrm{b}} 38,76^{\mathrm{a}} 4$, $7,11,21$; Being is $u_{0}, 74^{b} 23,75^{\text {a }}$ $23,35,76^{\mathrm{b}} 8,79^{\mathrm{a}} \mathrm{I} 7 \mathrm{ff}$., is either u. or has come to be, $79^{\text {b }} 21$ ff.; God is no more u. than anything else, $77^{\text {b }} 24$.

Unguents, fatal to vultures, Mir. $45^{\text {a }} 35$; stupefy bees, $32^{\text {a }} 3$.
Unit, Lin. of measurement, $68{ }^{\mathrm{b}} 8 \mathrm{ff}$., $16,69^{\mathrm{b}} 8$; is there a simple u. in every class of quanta? $68^{a} 2$, affirmed, 68 a 8 ; simple units in objects of sense and thought, $68^{\text {a }}$ 17, 18 ; u.-square, $68^{\text {b }} 16,20$.
Unity of Being no more proved than multiplicity, $M X G \cdot 74^{\text {b }} 24$; see also One.
Unknowable, Gorgias' view that if anything is, it is u., MXG. $79^{\text {a }}$ II, $80^{2} 8$-19, b ${ }^{1} 7$.
Unlimited, MXG. $76^{\mathrm{a}}{ }_{16} 16,20, \mathrm{~b}_{3} 6$; Anaxagoras' use of the term, $75^{\text {b }}$ 16-19: Melissus' use of the term, $75^{\text {a }} 29-30$; nature of the u., $78^{\text {a }}$ ${ }^{17}-20$; Being is u., $74^{a} 9-11,{ }^{\text {b }} 8$, $22,75^{\mathrm{b}} 37,76^{\mathrm{a}} 4,22, \mathrm{~b} 9,79^{\mathrm{b}} 22$, this view criticized, $75^{\text {b }} 34 \mathrm{ff}$., denied, $76^{\mathrm{b}} 35$; the u. cannot exist anywhere, $79^{\mathrm{b}} 23$; the depths of the earth and air are u., $76^{\mathrm{b}} 32 \mathrm{ff}$; God is neither limited nor $\mathrm{u}, 77^{\mathrm{b}} 3,20$, this view criticized, $78^{\text {a }}{ }_{16-b}{ }^{-b}$; more than one thing cannot be u., $76^{\text {b }}$ 9, Not-being is u., $77^{\text {b }} 3-5,78^{\mathrm{a}} 25$; if Not-being is u., why should not Being also be u.? $78^{\text {a }} 26-37$.
Unmoved)('not moving', 78 ${ }^{\text {b }}$ 17 ff ; ; God is neither moved nor u., $77^{\text {b }} 10,20$; Not-being is not necessarily u., because Being is moved, $78^{\text {b }}$ 15, 16 ; see also Motion.
Uprightness, see Justice.
Uranion (Mt.), Mir. $4 \mathrm{I}^{\text {a }}$ Io.
Urine, Mir. $35^{b} 29,45^{a} 33$.
Utica, Mir. $44^{a} 6$
Vanity, Ph. $10^{\mathrm{b}} 32,13^{\mathrm{a}} 12$.
Vapour, $P l$. in baths, $22^{\text {b }}$ 19-22, $24^{\text {b }}$ 25-34; in the composition of plants, $24^{\mathrm{b}} 6$; in the earth, 22^{b} 27,29 ; fresh v. from salt water, $24^{\mathrm{b}} 21 \mathrm{ff}$.
Vargariaton, Pl. $19^{9} 12$.
Vegetables, Pl. $19^{\text {b }} 2,18,28^{\mathrm{b}} 15$; defined, $19^{\text {b }} 9$.
Veins, Aud. $4^{\mathrm{b}} 27$; Ph. $12^{\mathrm{a}} 29$; v. of plants, $P l$. $18^{a} 6,11,19^{2} 36$.
'Velocities', 'parallelogram of ', Mech. $54^{\mathrm{b}} 16 \mathrm{ff}$.
Venetians, see Heneti.
Versified history, by Polycritus, Mir. $40^{\text {b }} 32$.

Vertical, vertically, Mech. $49^{\text {a }} \mathrm{I}$, $52^{a} 27,55^{b} 19$.
Vibration in a long plank, $57^{\mathrm{a}} 7,8$, 25-27.
Villany, Ph. II $^{\text {b }} 22$.
Vine, $P l$. $18^{\mathrm{b}} 37,20^{\mathrm{a}} \mathrm{I}^{16,{ }^{\mathrm{b}} 38 \text {; ' } \mathrm{mad} \text { ' }, ~}$ Libyan v., Mir. $46^{a} 38$.
Violet colour, $\operatorname{Col} .92^{a} 7,15-29,{ }^{\text {b }}$ IO, $93^{\mathrm{a}} 6,94^{\mathrm{a}} 21,96^{\mathrm{b}} 4,97^{\mathrm{a}} 7,99^{\mathrm{b}} 3$.
Violets, Mir. $36^{6} 16$.
Viper, Mir. $31^{\mathrm{a}} 27,44^{\mathrm{b}} 32,45^{\mathrm{b}}$ I9, $4^{6 b}$ 18-21; arrow-poison made from its venom, $44^{\text {b }} 35$.
${ }^{6}$ Visinertiae', Mech. $5 \mathrm{I}^{\mathrm{b}} 36,58^{\text {a }} 8$, 9 .
Vision, acuity of, increased by copper, Mir. $34^{\text {b }} 27$; see also Eyesight, Sight.
Voice, Aud. $\mathrm{o}^{\mathrm{a}} \mathrm{I}$, affected by mode of emitting breath, $0^{a} 17-1^{a} 20$, ${ }^{1} \mathrm{I}-4,22-26,2^{\mathrm{a}} 2-7,{ }^{\mathrm{b}} 29-39,3^{\mathrm{a}} 6$ $23,{ }^{\mathrm{b}} 2-9,18-22,4^{\mathrm{a}} 9,17-28,33$, ${ }^{1} \mathrm{y}-26$, by structure of lungs, mouth and windpipe, $o^{a} 17-1^{a} 9$, by condition of these organs, $1^{\text {a }}$ 10-20, $3^{\text {a }}$ IO-18, b $18-22,4^{\text {a }} 17-21$, $\mathrm{b}_{2} \mathrm{I}$; qualities of,-aspirated)(smooth, $4^{\text {b }} 8$-II ; breath-like, $P h$. $7^{\mathrm{b}} 35$; broken, Aud. 4^{b} 11-26; clear)(dim, $0^{a} 14, I^{b} 22-31$, $40,2^{\mathrm{a}} 5$; cracked, $4^{\mathrm{a}} 37$ - $^{\mathrm{b}} 8$; deep)(shrill or piercing, $1^{a} 9,3^{a} 6-$ $8,4^{\text {a }} 27 ;$ Ph. $6^{\text {b }} 27,7^{\text {a }} 13-24,13^{\text {a }}$ 31-b6; distinct, Aud. I $^{\text {b }}$ I-15, 21, 28 ; 'grey')('white', $2^{\text {a }}$ 2 ; hard) (soft, $I^{\text {a }} 16-18,2^{\text {b }} 30-$ $3^{\mathrm{b}} \mathrm{I} ; P h .13^{\mathrm{a}} 35$; harsh, or rough, Aud. $2^{\mathrm{a}} 4,3^{\mathrm{b}} 2-9,4^{\mathrm{b}} 3-8$; hoarse, $1^{\text {a }} 12-15$; hollow, $\mathrm{o}^{\mathrm{b}} 36 ; P h .13^{\text {b }}$ 2; piping, Aud. 4 ${ }^{\text {a }} 2 \mathrm{I}-28$; simple, $P h .13^{\text {b }} 2$; strong or loud)(weak, Ph. 6b $27,7^{\mathrm{a}}$ 23-25, ${ }^{3} 35,13^{a} 31$; thick)(thin, Aud. $3^{\text {b }} 18-4^{\text {a }} 28$; physiognomic inference from the v., Ph. $6^{\mathrm{a}} 31, \mathrm{~b}_{27}$, $7^{\mathrm{a}} 13-24,{ }^{\mathrm{b}} 35,13^{\mathrm{a}} 3 \mathrm{I}^{-\mathrm{b}} 6$.
Void, the, $M X G .76^{\mathrm{b}} 4,5,12,13$, $34,80^{\mathrm{a}} 7$; views regarding it, 76^{a} 14 ff .
Volaterra, Mir. $37^{\text {b }} 32$ (note).
Volcanoes, Mir. $33^{\mathrm{a}} 10-23,40^{\mathrm{a}} \mathrm{I}-5$, $41^{a} 20-25,46^{a} 9-16$.
Volume, of honey, constant when frozen, Mir. $31^{\text {b }} 31$.
Vomiting, $A u d .4^{2}$ I 8.
Vulture, Mir. $35^{\text {a } 2-5, ~} 45^{\text {a }} 35$.
Waist, $P h .1^{10}{ }^{\text {b }} 4^{-7}$.
Walnuts, $P l .20^{b}+2$.

Wandering Isles, the, Mir. $39^{\text {b }}$ I9.
Washing alluvial metals, Mir. $33^{\text {b }}$ 26.

Wasps, feed on vipers, Mir. $44^{\text {b }} 32$ 35.

Water, Col. colour of, naturally white, $91^{\mathrm{a}} 2,92^{\mathrm{b}} 23,95^{\mathrm{a}} \mathrm{II}$; when ruffled, black, $91^{2} 20-25$, or purple, $92^{\mathrm{a}} 21$; when smooth, variegated, $93^{b} 9$; when stagnant, black, green and other hues, 94^{b} 23-34. (cp. $91^{\mathrm{b}} 25$), $96^{\mathrm{a}} 11-17,97^{\mathrm{b}}$ $2-7$; in drops, lustrous, $93^{a} 15$; a translucent medium, $93^{\text {b }} 30,94^{\text {a }}$ 5 ; Pl. element of, in plants, $22^{\text {a }}$ 13, $28^{\text {a }} 26$; fresh w. rises above salt, $24^{\mathrm{a}} 3 \mathrm{I},{ }^{\mathrm{b}} 15$; the material of plants, $24^{\text {b }} 12$; naturally fresh, $24^{\text {a }} 5$; naturally rises above the earth, $23^{\text {b }} 3,24^{\mathrm{a}} 8$; no rarity in, $23^{\mathrm{a}} 6$; running w., $23^{\text {b }} 27$; salt w. unfavourable to plants, $24^{\text {b }} 35 \mathrm{ff}$.; Mir. impregnated with salt, $44^{\text {b }} 9$ 22, with soda, $34^{\text {a }} 31$; Mech. objects in whirling w., why carried to the middle, $58^{\mathrm{b}} 5-31$; progression through w. slower than through air, $5 \mathrm{I}^{\mathrm{a}}{ }^{17} ; \mathrm{M}^{2}$. Democritus' view of, $75^{\text {b }} 28$; an eternal element, $75^{\text {b }} 5$; the universal element, $75^{\mathrm{b}} 23,76^{\mathrm{a}} 18,{ }^{\mathrm{b}} \mathrm{I}$; w.-birds, Ph. $1 \mathrm{IO}^{\text {a }} 23$; w.-lily, Pl. $25^{\text {b }} 35$; w.-plants, $25^{\mathrm{a}} 40 \mathrm{ff}$., $26^{\mathrm{b}} 30 \mathrm{ff}$.

Watering, effect of, on plants, $P l$. $2 \mathrm{I}^{\mathrm{a}} 38$ 。
Watery places, plants growing in, $P l .26^{\mathrm{b}} 9 \mathrm{ff}$.
Wattles of birds, Col. $99^{\text {b }}$ I4.
Weasel, Mir. $32^{\mathrm{b}} 2$ (note).
'Weasel-armed ', Ph. 8a 3 1.
Wedge, mechanics of, Mech. $53^{\text {a }}$ 19-31 ; compared with axe, $53^{\mathrm{b}} 22$.
Weights, Mech. carried by two persons on a piece of wood, $57^{\text {b }}$ 9-11; force of w. increased by movement, 53^{b} 18-23; large w., weighed with steelyard, $53^{\text {b }} 25-$ $54^{\mathrm{a}} 15$, raised, by lever, $47^{\mathrm{b}} 2,50^{\mathrm{ab}}$ $30^{-\mathrm{b}} 9$, by pulleys, $53^{\mathrm{a}} 3 \mathrm{I}^{-\mathrm{b}} 13$; small w. imperceptible in small balances, $49^{\text {b }} 29$; w. of a 'swipe', $57^{\mathrm{a}} 35,{ }^{\mathrm{b}} 4,5$.
Wells, Mir. $34^{\text {b }}$ I $;$ Mech. $57^{\text {a }} 34$.
Wheat, $P l$. $19^{\mathrm{b}} 14,20^{\mathrm{b}} 8,2 \mathrm{I}^{\mathrm{a}} 32$; asserted origin at Enna, Mir. $36^{\text {b }}$ 21-26.
Wheels, Mech. $51^{\mathrm{b}} 18,52^{\mathrm{a}} 24,30$;
dedicated in temples, $48^{\mathrm{a}} 25$; potter's w., $5 \mathrm{I}^{\mathrm{b}} 2 \mathrm{O}$.
Whirling water, objects in, why carried to the middle, Mech. $5^{\text {b }} 5$ 5-3I.
Whirlpool, Mir. $32^{\text {b }} 4$.
White, Col. the natural colour of air, earth and water, a simple colour, $91^{2} 3-7,94^{a} 5,95^{a} 11$; in blends, $92^{a} 8,16,94^{\mathrm{a}} \mathrm{I}-15,95^{\mathrm{b}} 19$, $96^{\mathrm{b}} 14$; other references, $93^{\mathrm{a}} 8$, $94^{\mathrm{b}} 2,95^{\mathrm{a}} 10-15,32,96^{\mathrm{a}} 22,{ }^{\mathrm{b}} 4$, $24,97^{b} 2,15,21,98^{a}{ }_{1} 5^{-b} 15,27^{-}$ $99^{\text {a }}$ I, 19; Ph. ($\lambda \epsilon$ кко́रооия), 8 a 34 ,
 $12^{a} 13,{ }^{b} 5$; w.-leaved rod of Phasis, Mir. $46^{\mathbf{a}} 29$; 'w.' as an accidental predicate, Mech. 56^{a} 35 ; w. lead, $M X G .78^{\mathrm{a}} 10,15$.
Whiteness in plants and trees, $P l$. $20^{b} 21,27^{\mathrm{b}} 19,30$.
Wild, boar, $P h .6^{\text {b }} 9 ; P l$. fig, $21^{\text {a }}$ 23; fruit, $20^{\mathrm{b}} \mathrm{I} 5,23$; olive, $2 \mathrm{I}^{\mathrm{a}} 25$; plane, $20^{\text {b }} 4 \mathrm{I}$; plants, $19^{\text {b }} 29,30$, $2 \mathrm{I}^{\mathrm{a}} 40$; trees, $19^{\mathrm{b}} 37,2 \mathrm{I}^{\mathrm{a}} \mathrm{I}$.
Willow, Pl. $20^{a} 8$.
Windlass, Mech. $52^{\text {b }}$ 12-21, $53^{\mathrm{b}} \mathrm{I} 2$.
Windpipe, and quality of voice, Aud. $\mathrm{o}^{\mathrm{a}} 2 \mathrm{O}, 28, \mathrm{~b}_{20-\mathrm{I}^{\mathrm{a}}} 13,3^{\mathrm{a}} 10-$ $18,4^{\text {a }} 19,{ }^{\text {b }} 18$.
Winds, names of, in Vent., N., Boreas, also Pagreus; NNE., Meses, also Caunias, Idyreus; NE., Caecias, also Caunias, Thebanas ; E., Apeliotes, also (Berecyntias), Cataporthmias, Hellespontias, Marseus, Potameus, Syriandus; SE., Eurus, also Carbas, Phoenicias, Scopeleus; SSE., Euronotus, also Amneus; S., Notus; SSW., Leuconotus; SW., Lips; W., Zephyrus; NW., Iapyx, also Argestes, Pharangites, Scylletinus; NNW., Thracias, also Circias, Olympias, Sciron.
Wine, Col. $94^{\mathrm{a}} 22$, w.-colour, $92^{\text {b }} 7$, 95^{b} I, 28, $96^{\mathrm{a}} 9$; Mir. made of honey, $33^{a} 6-13$; miraculous caldrons of, at Elis, $42^{\text {a }} 25-34$: w.merchant, $32^{\mathrm{b}} 2 \mathrm{I}$.
Wings, of statues, Aud. $2^{\text {a }} 39$; of birds, see Plumage.
Wisdom, $P h .8^{\text {b }}$ I.
Wolf, Ph. I1 ${ }^{\mathrm{a}}$ I7; Mir. $36^{\text {b }} 27$.
Women, character of, $P h .9^{\text {b }} 1,12^{\text {a }}$
$14,{ }^{b} 18,13^{a} 27$; gait of, $13^{a} 15$; voice of, $13^{\text {b }}$ I, Aud. $3^{\text {b }} 20$; excluded from worship of Agamemnonidae, Mir. $40^{\mathrm{a}} 9$; hardiness of Ligurian, $37^{\mathrm{b}} 20-23$; Trojan, in Daunia, $40^{\text {b }} 9$; see also Female, Sex. Wood, as a dye, Col. $94^{\text {a }} 18 ;$ mode of testing, Aud. $2^{\text {a }} 32 ; P l$. of plants and trees, $18^{\mathrm{a}} 7,9,19^{\mathrm{a}} 33$, $21^{\text {b }} 10,27^{\mathrm{b}} 26$; aromatic, $20^{\mathrm{b}} 27$; rarity in, $23^{a} 24$; Mech. piece of, how most easily broken across the knee, $52^{\text {b }} 22-28$, splits most easily from one end, $5^{\mathrm{b}} 7$; weight carried on, by two persons, $57^{\text {b }}$ 9 ff .; why it must be violently struck with an axe in order to be cut, $53^{\text {b }} 14-24$.
Wooden horse, Mir. $40^{\mathrm{a}} 30$.
Woodpecker, habits of, Mir. 3 ${ }^{\text {b }}$ 5-9.
Wool, dyeing of, Col. $94^{\mathrm{a}} 3^{-1} 7$.
Woolly hair, Ph. $12^{\mathrm{b}} 30$.
Words, expression of things in, $M X G .80^{\mathrm{b}} 6-9$; things are not w., $8 \mathrm{o}^{\mathrm{b}} \mathrm{I} 8$.

Worms, Pl. $25^{\text {a }} 4$:
Wormwood, Pl. $2 \mathrm{o}^{\mathrm{a}} 36$.
Wrinkles, $7^{\text {b }} 4,8^{\text {a }} 8$.
Xenophanes, concerning volcanoes, Mir. $33^{\text {a }}$ 16; $M X G .7^{6^{a}} 32$; his views stated, $77^{\mathrm{a}} \mathrm{I} 3^{-\mathrm{b}} 20$, criticized, $77^{\text {b }} 2$ I $-79^{\text {a }}$ Io.
Yard-arm, raising of, increases speed of ship, Mech. $5 \mathrm{I}^{\mathrm{a}} 3^{8-\mathrm{b}} 6$.
Yellow, Col. the colour of fire, a simple colour, $9 \mathrm{I}^{\mathrm{a}} 4$; in parts of plants, $95^{\mathrm{a}} 5,33,96^{\mathrm{b}} 12,15,97^{\mathrm{a}}$ 15-20; of hair, $97^{\text {b }} 7,98^{\mathrm{a}} 5,{ }^{\text {b }} 32$, 33, $99^{\mathrm{a}} 3,7 ; P h .9^{\mathrm{b}} 25,12^{\mathrm{a}} 15$ ('tawny') ; of eyes, $12^{\mathrm{b}} 3$ ('chestnut') ; y. hair, from bathing in R. Crathis, Mir. $46^{\text {b }} 36$; y.-green, Col. $94^{\text {b }} 27,29,95^{\text {a }} 13,97^{\text {a }} 23,25$.
Zeno, Lin. 68 ${ }^{\mathrm{a}} 19,69^{\mathrm{a}} 26, \mathrm{~b}_{17} \mathrm{ff}$; MXG. $76^{\mathrm{a}} 25,79^{\mathrm{a}} 4,23,{ }^{\mathrm{b}} 25,37$.
Zephyrus (W. wind), Vent. $73^{\mathrm{b}} 12$.
Zeus, born in Crete, Mir. $36^{6} 29$;
fountain of Z. Horcios, $45^{\text {b }} 33$; at Pedasa, temple of, $44^{b} 6$, worship of, $44^{\text {a }} 35$.
Ziara, Pl. $20^{\mathrm{a}} 5$.
Zones, third and fourth, Pl. $26^{\text {a }}$ I4.

[^0]: ${ }^{1} 791^{\text {a }} 8$, 9. This apparently must mean that the yellow of kovia is a mixture, due to colours received from heating and from black smoke. But as we have just learned that yellow is a simple colour, the passage is suspicious.
 ${ }^{2} 791^{\text {a }} 14$. Omitting $\mu \dot{\prime}$ with Coel. Calcagninus in his translation. From 11. 9, 10 we learn that black is due to transmutation of elements. Prantl points out that there is no difference, if the text is right, between
 ор'́ $\mu \varepsilon \nu \sigma \nu$ in 1.16 must refer to both. He therefore takes the case of transmutation to be a first condition, here supplied in thought only, and the η in 1.15 to mean 'or in other words', so that $\tau \dot{\Delta} \mu \eta$ ' óp' $\mu \varepsilon \nu \circ \nu$
 the explanatory sentences ámáv $\omega \nu \nu$ yà $\rho \kappa \tau$. and tò $\gamma \grave{a} \rho \rho \mu \bar{\eta} \kappa \tau \lambda$., being separate, seem to show that $\hat{\eta} \ldots \eta^{\prime}$ introduce two distinct conditions. We therefore take $\tau \dot{o}$ o $\delta \rho \dot{\omega} \mu \epsilon r^{\prime} \circ \nu$ which is $\phi \dot{v} \sigma \epsilon \iota \mu_{\epsilon} \lambda a \nu$ to refer to transmutation of elements.

[^1]: ${ }^{1} 791^{12} 27$. Cf. $794^{\text {a }} 11$-14.
 ${ }^{2} 791^{\mathrm{b}}$ 10. Sc. phosphorescent objects.
 ${ }^{3} 791^{\mathrm{b}} 20 . S C$, in a kiln.

[^2]: ${ }^{1} 793^{\mathrm{a}}$ I ff. It may be doubted whether $\lambda_{n} \mu \beta$ áve $\theta \theta a$ is genuine. If there is any difference of meaning between $\dot{\wedge} \nu_{i \sigma \omega s}$ and $\dot{a} \nu \omega \mu \dot{\lambda} \lambda \omega s$, the former will refer to successive admixtures of a colour with different strengths of light or of shade, the latter to simultaneous admixture of different parts of a stretch of colour with such different strengths.

[^3]:

[^4]:
 must refer to $\mu \in \lambda a ́ v \omega \nu \kappa a \rho \pi \hat{\omega} \nu, 795^{\text {b }} 32$.
 ${ }^{2} i b$. i. e. those which have black fruit.
 ${ }^{3} 796^{3} 6$. Reading with Prantl фоицкiâ for μ étava: a second colour is clearly implied by $\overline{\boldsymbol{\jmath} ф о т є ́ p \omega \nu, 1.7 . ~}$
 ${ }^{4} 796^{3} 8$. i. e. crimson and black.

[^5]: ${ }^{1} 796^{\text {a }}$ 29. λ evkavetis is perhaps to be suspected, and may be due to入evoós; possibly àmoxpav日eis should be read, cp. 1. 24.

[^6]: ${ }^{1} 797^{2} 6$. Reading with Schneider aipatitionas for aipatioas. He annotates: 'ciцдтitis dici solet, intellecto $\phi \lambda \epsilon ́ \psi$. Aristoteles $\phi \lambda \epsilon ́ \beta a$, dixit, alii $\sigma a ́ p \kappa \pi$, ubi sanies continetur ad purpurae tincturam apta.' Cf. Aristot. H. A. v. 15, $547^{\text {a }} 19$.

[^7]: ${ }^{1} 797^{\text {b }} 4$. i. e. plants.
 . $797^{\text {b }}$ 18. As in man. ${ }^{3} 797^{\text {b }} 19$. As in some animals.

[^8]: Prantl suggests ка́ $\mu \eta \lambda$ os for $\mu \in \lambda a s$.
 ${ }^{2} 798^{\mathrm{b}} 7$. Bekker and Prantl put a full stop after kúves, in which case the sentence has no verb. The two sentences should run on together with only a comma after кúves. This new class of animals will thus be contrasted with $\tau \grave{\alpha} \pi \lambda \epsilon \hat{\imath} \sigma \tau \alpha \tau \hat{\omega} \nu \zeta \dot{\omega} \omega \nu, 1$. I.

[^9]: ${ }_{2}^{1} 799^{\text {a }}$ I. Keeping MS. ó $\rho \nu i \theta_{\omega \nu}$ but reading $\mu \epsilon \tau a \beta a ́ \lambda \lambda \leqslant \iota$.
 ${ }^{2} 799^{n}$ 3. Reading távta रà ${ }^{2}$ тav̂тa.

[^10]: ${ }^{1} 800^{\text {b }} 25$. For this instrument cf. Pollux, Onomasticon, iv. 10, and Chappell, History of Ancient Music, p. 268.

[^11]: ${ }^{1} 80 \mathrm{I}^{\mathrm{a}} \mathrm{I}$. Reading $\delta t a \rho \theta \rho \hat{v} \sigma \theta a t$ for $\delta t a \iota \rho \epsilon$ í $\theta a t$.

[^12]: ${ }^{1} 80 I^{2}$ 28. Reading with the MSS. кépapov.
 ${ }^{2}$ SOI ${ }^{\mathrm{b}}$ I. Reading $\tau \dot{\eta} \nu \delta \grave{\varepsilon}\langle\tau \hat{\eta}\rangle \pi \lambda \eta \sigma i o \nu$.

[^13]: ${ }^{1} 801^{\mathrm{b}} 2 \mathrm{I}$. Reading $\sigma a \phi$ eis for daraфeis. The latter, however, is not impossible.
 technical terms connected with the aủdós see A. A. Howard. The Aùdis or Tibia, Harvard Studies in Classical Philology, vol. iv (1893).
 ${ }^{3}$ EOI ${ }^{\text {b }}$ 37. Reading $\sigma v \gamma \kappa \rho o r \eta \tau$ '́pas (on the analogy of крот $\eta \tau$ ós) for the MS. reading $\sigma v \gamma к р о т \epsilon_{p}$ rus, for which Bekker reads $\sigma \kappa \lambda \eta \rho о \tau \epsilon \rho a \iota s$.
 ${ }^{4} 802^{2} 2$. i. e. harsh.
 ${ }^{5} \mathrm{E}_{2}{ }^{\mathrm{a}} 2$. i.e. clear.

[^14]: ${ }^{1} 802^{\text {a }} 26$. The meaning of $\delta v v^{\prime} \phi о \rho o \nu$ is very doubtful.

[^15]:

[^16]: ${ }^{1}$ So3 ${ }^{\text {a }}$ 1. Omitting кaì μ адакós, which is due to $\sigma к \lambda \eta \rho о \tau \epsilon ́ \rho a \nu$ каi $\mu и \lambda a \kappa \omega \tau \epsilon \beta a \nu, 1.8$ below.

[^17]: ${ }^{1} 803^{\text {a }} 25$. Or perhaps, 'when they are accompanying a hymn of victory.'

[^18]: ${ }^{1} 803^{\text {b }}$ I4. Reading ßıatotépà for ßuaórépov.

[^19]: ${ }^{1} 804^{\text {b }}$ 14. Reading with Wallis σ кé λ_{η} for $\sigma \kappa \epsilon$ ín.
 ${ }^{2} 804^{\mathrm{b}} 15$. Reading $\sigma v \boldsymbol{1}$ óvous övtas for $\sigma u \nu$ óvos.

[^20]:

[^21]: ${ }^{1} 805^{\text {h }} 15$. $\mu \epsilon^{\prime} \tau_{t}$ should probably be omitted with Ia ${ }^{\text {a }}$, but Hayduck's $\epsilon^{\prime} \nu \tau \pi$ is attractive.

[^22]: ${ }^{1} 805^{\text {b }} 21$. Read with Förster $\delta u \sigma a \phi \eta \sigma \in \epsilon$ on the evidence of the Latin version by Barth. Messanius.
 ${ }^{2} 805^{\text {b }} 29$. The Latin version of Barth. Mess. supports $\dot{a} \pi \dot{u} u \tau \omega \nu$ in place of $i \nu \theta \rho \dot{\omega} \pi \omega \nu$. Otherwise ivo μ oi $\omega \nu$ would seem more likely to have given rise to the error.
 ${ }^{3} 806^{i}$ I-3. Inserting $\ddot{\omega} \sigma \tau \epsilon$, before μi, . Wachsmuth proposed to

 ${ }^{4} 806^{\mathrm{a}} 9$. Omitting $\mu \eta$ with Hayduck.

[^23]: ${ }^{1} 805^{b}$ I. Omitting $\tau \epsilon$ with F.
 ${ }^{2}$ These qualities are 80 of birds in the sense that they do not occur in the rest of the lower animals; but they may occur in men, for otherwise no physiognomic conclusions could be drawn from them.

[^24]: ${ }^{1} 806^{\mathrm{b}} 36$. Omitting év $\tau 0 i ̂ s$ with three MSS. Cf. $805^{a} 28$.
 ${ }^{2} 807^{\text {a }} 5$. Reading $\pi \kappa \kappa \rho o ́ \nu$ with Sylburg.

 necessary to avoid undue abruptness. The abruptness of the next sentence $\pi \epsilon \rho \hat{l} \phi \omega \nu \hat{\eta} s$ is suspicious. The sense is катà тà $\zeta \hat{\varphi} a$, oîov $\pi \epsilon \rho \hat{\imath}$

 ${ }^{5} 807^{a} 14$. Read with La $\delta \in i v$ in place of $\delta v e i v$ ëvekev.

[^25]: ${ }^{1} 807^{2}$ 23. F. thinks that there is a lacuna between $\epsilon^{\prime} \nu \tau \hat{\varphi}$ and $\tau \eta \nu$ $\mu \epsilon ̀ \nu{ }^{\prime} p \rho \omega \mu \dot{\epsilon} \nu \eta \nu$, and suggests that the last of the missing words may be $\tilde{\omega} \tau \tau \epsilon \phi \omega \nu \eta \eta^{\prime}$. But it is more likely that there is an anacoluthon.
 ${ }^{2} 807^{\text {b }}$ I. Read with Schneider катєбтаб μ ह́vat.

[^26]: ${ }^{1} 807^{\mathrm{b}} 16$. Read d̀vectéva. Schneider.
 ${ }^{2} 807^{\text {b }}$ 28. Read àvàá $\mu \beta a \nu \epsilon$ (F.) on evidence of Barth. Mess.

 Cp. Anon. de physiogn. liber, 107 'Vocem infirmi spiritus . . коілобтон'а.'

[^27]:

 எஸินa. F.

[^28]:
 $k \tau \lambda$. F. following Schneider and Rose.

 * $808^{\text {b }} 17,18$. The passage is corrupt and the sense uncertain. The translation supposes that $\mu^{\prime} \dot{v}^{\prime} \in t \nu$ is nearer to the original than the better supported oúrav.

[^29]: ${ }^{1} 809^{a}$ 10. Read кai ai àmó。 F.

 ${ }^{3} 809^{a}$ 18. A passage corrupt, perhaps beyond repair.
 ${ }^{1} 809^{\mathrm{a}}$ 20. Omit $\$$ and τ t. F.
 ${ }^{5} 809^{\mathrm{a}} 21$. Read τ ts for $\tau \epsilon$. F.

 ${ }^{7} 809^{\text {a }} 35,36$. Read $\delta v \sigma \pi a \rho a \pi \epsilon \epsilon \sigma$ то́тє $\rho o l . ~ S y l b u r g . ~$

[^30]: ${ }^{1} 809^{\text {b }}$ Io. Perhaps ijסím кui í $\mu \pi \lambda \epsilon \sigma \tau \epsilon ́ p a \nu$ 多 with F. from Adamantius.
 ${ }^{2} 809^{\text {b }}$ I2. F. rightly marks a lacuna after $\epsilon v a \nu t i a$, to be filled by డute то̂̂ $\mu \epsilon ่ \nu$ äppevos or the like.
 ${ }^{3} 809^{b}$ 20. Read μ erpiovs, as F. suggests.
 ${ }^{4} 809^{\text {b }} 23,24$. Read ivívi $\lambda \lambda$ ov. Sylburg. Cp. $812^{\text {b }} 34$.

[^31]: ${ }^{1} 809^{b}$ 34. Read é $\lambda \epsilon v \theta \epsilon ́ \rho t o \nu . ~ G e s n e r . ~$
 ${ }^{2} 809^{\text {h }}$ 38. Read $\epsilon^{\prime} \nu \epsilon j^{\prime} \gamma \epsilon i$, as F. suggests.
 ${ }^{3} 810^{\mathbf{2}} 23,24$. Read ôpvitas tov̀s $\sigma \tau \kappa \gamma a v o ́ \pi$ odas. Gesner.

[^32]: ${ }^{1} 810^{a} 31$. Read $\lambda \alpha^{\prime} \lambda o t$, as F. suggests.
 ${ }^{2} 8 \mathrm{IO}^{\text {b }} 4$. Barth. translates 'bene lumbosi ". The correction of そ $\omega \nu$ oi into eűcuvo dates from Gesner and Porta. But Porta seems right in saying 'potius succinctos, et graciles, quam lumbosos interpretandum', if one looks at actual specimens.
 ${ }^{3} 810^{\mathrm{b}} 5$. Omit kaì roùs kívas as F . suggests. $\mathrm{Cp} .811^{2} 21,812^{\mathrm{a}} 10$, where the author is evidently adding instances from dogs to the accepted examples.

[^33]: ${ }^{1}$ 810 ${ }^{\text {b }} 2 \mathrm{I}$. Read $\sigma v \nu \epsilon \omega \sigma \mu \epsilon ́ v o \nu, ~ F$.
 ${ }^{2} 810^{\text {b }} 23$. Read $\langle\mu a ̂ \lambda \lambda o \nu\rangle \hat{\eta}$ évóeias. F.
 ${ }^{3}$ 8iriaz. Read édevé́pıot. F.
 ${ }^{4} 8 \mathrm{Ir}^{2} 5-\mathrm{IO}$. With a supple collar-bone it is easy, with a stiff one difficult, to move the head and so adjust the facial sense-organs to stimuli,

[^34]:
 ${ }^{2}$ 8II ${ }^{\mathrm{b}}$ I5. Read ${ }^{\prime} \mu \pi \epsilon \pi \omega \kappa \kappa ́ \sigma \iota$. Schneider.

 ${ }^{4} 811^{b} 27$. But not unduly deep. Or read with Kekulé, $\epsilon \pi i \pi \epsilon \delta o \iota$, 'flat'.

 ${ }^{6} 8$ II $^{\text {b }} 33$. Read tò μ ét $\boldsymbol{T} \pi \pi \%$. Wachsmuth.
 ${ }^{7} 8$ I $^{\text {b }} 37$. Omit oi kíves. F.

[^35]: ${ }^{1} 812^{a}$ I2. Read Ai $\gamma u \pi t i o u s\langle k a i\rangle A i \theta i o \pi a s . ~ F r a n z . ~$

[^36]: ${ }^{1} 812^{\text {b }} 6,7$. Read aiy $\omega \pi$ oi. Gesner, \&c. But no reading suggested is very satisfactory.
 ${ }^{2} 812^{\text {b }} 24$. Clearly the meaning must, as Porta points out, concern hair. Porta suggests μ акроүє́veєot, but it is doubtful whether this could mean 'with a long beard', nor have most dogs long beards. The passage remains uncertain, but it does not mean 'with a long chin'.
 ${ }^{3} 812^{\text {b }} 26$. Read $\pi \rho o ̀ s ~ т \grave{\eta \nu} \rho$ fiva. Schneider.
 ${ }^{4} 81 \mathbf{1 2}^{\text {b }}$ 32. Read ${ }^{\epsilon} \mu \phi$ aivovar. F.
 See F,'s note.
 ${ }^{6} 812^{\mathrm{b}}$ 36. Omit $\epsilon \pi i \tau \eta \hat{\eta}_{s} \kappa є \phi a \lambda \hat{\eta} s . \quad \mathrm{F}$.

[^37]: ${ }^{1} 813^{\text {a }} 7$ ．Omit oủk．Willich．

 ${ }^{3}$ 813 ${ }^{\text {a }}$ IO， 1 I．Read ảvaфopaí for ảvaф́́povtut．
 ${ }^{4} 813^{\text {a }} 12$ ．Read qavpoa入a̧óves．Sylburg．
 $5813^{a} 13$ ．Read $\epsilon \pi \iota \sigma a \lambda \epsilon v^{\prime}$
 ${ }^{6} 813^{\text {a }} 15$ ．Read Өj่ $\lambda \epsilon \iota$ ．

 ${ }^{8}$ 813 $3^{\text {a }}$ 21．Read oi кать入入aiyovtes（Hemsterhuis），or кaть入入ayтai ゅраїбтаі．F．

 ${ }^{10} 813^{\text {a }} 24$ ．Read oै ψ eis．Sylburg．
 seems to be corrupt．

[^38]: ${ }^{1} 814^{\mathrm{b}}$ 6. Read $\neq \pi \epsilon \epsilon \tau a\langle\tau \grave{a}\rangle \pi \epsilon \rho i$. F.
 Barth. Mess. translates 'in quibus et sapientiae plurimae superapparentia fit'; and, as 'superapparens' is his term for énıфavís and

[^39]: ${ }^{1}$ Nicolai Damasceni de Plantis Libri duo Aristoteli rulgo adscripti ex Isaaci ben Honaici versione Arabrica Latine revtit Alfiedus, recensuit E. H. F. Meyer (Lipsiae, I841).
 ${ }^{2}$ Meyer, pp. iv-ix.
 ${ }^{3}$ Vratislaviae, 1838 (one part only published).

[^40]: ${ }^{1}$ loc. cit.

 ${ }^{3}$ Cf. de anima $403^{\text {b }} 31 \mathrm{ff}$.
 ${ }^{4}$ The views here expressed follow closely those of de anima $414{ }^{2} 29 \mathrm{ff}$.

[^41]: ${ }^{1}$ The argument is that there are some animals which lack intelligence, but they do not therefore cease to be animals; so plants do not cease to be alive because they lack sensation.
 ${ }^{2}$ Cf. H. A. $588^{\mathrm{b}} 12 \mathrm{ff}$.
 ${ }^{3}$ Various classes of animals are now enumerated, which though they differ in many respects yet all possess one thing, sensation, which puts them into the genus of animals.
 ${ }^{4}$ The text has quae ex arboribus crescunt, which is absurd and due doubtless to mistranslation. The reference is almost certainly to the production of animal life from the putrefaction of vegetable matter, cf. H. A. $539^{2} 23$.

[^42]: ${ }^{1}$ i. e. life as found in the heavenly bodies, in animals, and in plants. The reasoning is somewhat obscure, but seems to be that (I) animals have life and movement, (2) the heavenly bodies have a higher form of life and fixed movement, (3) plants have life but no movement.
 ${ }^{2}$ Reading habeat. $\quad{ }^{3}$ i.e. тò $\theta \rho \in \pi \tau \iota \times o ́ v$, cf. de anima $414^{\text {a }}$ 29-32.
 4 The motion of plants is that which takes place in the absorption of food.

[^43]: ${ }^{1}$ i.e. coldness and dryness.
 ${ }^{2}$ In particular, whether plants breathe, which is discussed in the next sentence.
 ${ }^{8}$ Cf. de respir. $470^{\text {b }} 30 .{ }^{4}$ Cf. ib. $470^{\text {b }} 9$.
 ${ }^{5}$ Cf. de somno $454^{\text {b }} 27$ ff. ${ }^{6}$ Cf. ib. $456^{\text {b }} 21$ ff.
 ${ }^{7}$ Reading with MS. Bas. quae tamen.
 ${ }^{8}$ The whole of this discussion follows closely that in G.A. 731^{18} I-b 8.
 9ib. $716^{\mathrm{a}} 21-23$.

[^44]: ${ }^{1}$ plantae . . . ex ea, the Latin text is evidently corrupt, but the Greek translation seems to give the right sense.
 ${ }^{2}$ Meyer shows that in this passage frigus and lechineon are corruptions due to a misunderstanding of the Arabic, and restores the sense of the passage as follows: Estque principium mutritionis plantarum a terra, generationis earum a sole. Quere Anaxagoras dixit carum semina ex aere deferri, aliique philosophi, eandem doctrinam proftentes, terram matrem, solem autem patrem plantarum esse. Cf. G. A. $716^{\mathrm{a}} \mathrm{I} 5 \mathrm{ff}$.
 ${ }^{3}$ impraegnatio no doubt represents the Aristotelian кúnua.

[^45]: ${ }^{1}$ i.e. only partly possessed of $\psi v \chi \dot{\eta}$ or anima. The suggested advantage is that it can subsist on easily obtained and poor nutriment, -it has, however, the disadvantage that it requires this constantly.
 ${ }^{2}$ Cf. H. A. $588^{\text {b }} 7$ ff.

 ${ }^{4}$ Cf. de long. et brev. vit. $466^{\mathrm{a}} 18 \mathrm{ff}$. ; de respir. $478^{\mathrm{b}} 27$.
 ${ }^{5}$ Meyer shows that the origin of this chapter is Theophr. Hist. I'lant., and that several words have been mistranslated in the Arabic or Latin version. Nodi et vencee are the ives (fibrae) кai $\phi \lambda \epsilon \in \beta \in s$ of Theophr. l.c. i. 2, 5 .
 shows that there is a mistranslation due to a confusion of the Arabic $\operatorname{mad}(=$ carnem $)$ and maadd (=ventrem).

[^46]: ${ }^{1}$ Emphasis must be put upon the numbers of plantarum and plantae; the sense is that it is easy to name the various parts of individual plants, but difficult to lay down definitions which will apply to the plant каӨó̀ou. Meyer compares Theophr. l. i. I, Iо ö̀ $\omega \mathrm{s} \pi o \lambda u ́ \chi o u \nu$ тù

 ${ }^{3}$ 'Speciem pro parte speciuli' (Meyer).
 ${ }^{4}$ These words can only apply to folia; the author is thinking of evergreens.
 ${ }^{5}$ The words a re and causam are manifestly corrupt. Meyer ingeniously suggests that $r e$ is the Arabic raie (a hot desert wind), and that causam is a corruption of cauma.
 ${ }^{6}$ Meyer supposes a lacuna here, otherwise there is nothing for istud in the next sentence to refer to.
 ${ }^{7}$ Omitting animal which destroys the sense.
 ${ }^{\circ}$ Reading illa with G. II.

[^47]: ${ }^{1}$ This word is clearly corrupt ；it perhaps represents the ápáxtova of Theophr．l．c．12， 7 ．
 ${ }_{2}$ Nodi is here，according to Meyer，used in its proper sense of knots （ $\ddot{o l}\}_{0 t}$ ）and not in the sense of ives（fibrae）as in 818 a 6 and 11 ．
 ${ }_{3}$ Omnium plantarum can hardly be right here，for it is stated below （1．30）that rami are not found in all plants．The parallel passage of
 piऍa，ктл．

 4 See notes on $818^{a} 6,819^{b}$ I3．
 ${ }^{5}$ These words are certainly corrupt：the parallel passage in
 фú入入ov каi ó картós．
 ${ }^{6}$ Omitting quae．

[^48]: ${ }_{2}^{1}$ This statement is borne out by Strabo, p. 383 and Theophr. op.cit.I. 4 .
 ${ }^{2}$ Meyer thinks that the Sahara is meant here.
 ${ }^{3}$ This word is hopelessly corrupt.
 ' 'Morum silvestrem pro sycomoro' (Meyer). i i.e. bulbs.

[^49]: ${ }^{1}$ Cofter, a transliteration of the Arabic geft (Meyer).
 2'Telam dixisse videtur cutiulam seminis propriam' (Meyer).
 ${ }^{3}$ 'Nux juglans est' (Meyer).

[^50]: ${ }^{1}$ Artemisia, probably the Arabic al-dumasit ($=$ luurus) (Meyer).
 ${ }^{2}$ Adui, probably the Arabic ad-dulb ($=$ platanus) (Meyer).
 ${ }^{3}$ Botam, probably the Arabic botham ($=$ terebinthus) (Meyer).

[^51]: ${ }^{1}$ Theophr. op. cit. 1H. 2, 3 distinguishes in almost similar terms between wild and garden plants: our author seems here to go a step further and make the wild plant akin to the male and the cultivated to the female plant. In this passage he gives only the characteristics of the male plant ; those of both are given in $817^{\mathrm{a}} 6-9$.

[^52]: ${ }_{2}^{1}$ Reading firmatur for frmetur.
 ${ }^{2}$ "The Aristotelian process of π '́ $\psi \tau$.
 ${ }^{3}$ i. e. in minerals the moisture is finally expelled by the heat.

[^53]: ${ }^{1}$ Cf. Phys. $243^{\mathrm{a}} 6 \mathrm{ff}$.
 ${ }^{2}$ Vis terrae, i.e. the force of the element of earth present in the plant.
 ${ }^{4}$ Cf. P. A. $650^{a} 20$.
 ${ }^{6}$ i.e. the excess of nutritive fluid.

[^54]: ${ }^{1}$ Cf. Meteor. $349^{\text {a }}$ I2 ff., $365^{\text {b }}$ I.
 ${ }^{2}$ Solidus here = $\sigma v v \in \chi$ 'ुs : water is 'solid' or 'continuous' in the sense that no rarity is present in it.
 ${ }^{3}$ As in the case of a sandy locality.
 ${ }^{4}$ Propter folia' i. e. propter formam foliaceam' (Meyer); the sense, however, is not particularly good and the words are probably corrupt.
 ${ }_{5}$ Cf. Meteor. $384^{\text {b }} 17$.

[^55]: 1 Meyer shows that the Arabic words varq (folia) and riadak (adipes) have here been confused.
 ${ }^{2}$ Reading ostendemus. $\quad{ }^{3}$ Ipsum $=$ se ipsum (Meyer).
 4 Pumice-stone, for example.
 5 The reading mutafekia is due to the transliteration of a misunderstood Arabic word: 'vertendum fuisset: si ergo alter alterum ada." quat, mergetur dimidius lapis, \&c.' (Meyer).
 ${ }^{6}$ i. e. wood, like pumice-stone, will float, because it has rarity in it. The rest of the chapter is a note on the formation of stones which float.

[^56]: ${ }^{1}$ i. e. the earth is naturally fresh and sweet in the sense that water is 'fresh'. Three points are raised in this somewhat confused passage, (I) why does water, which is naturally fresh, become salt? (2) what changes earth, which is naturally coherent and moist, into sand? (3) why do the two changes, of fresh into salt water, and earth into sand, take place together?
 ${ }^{2}$ i. e. change into another element ; here into air.
 ${ }^{3}$ The cause of the saltness of the sea is discussed in . Ileteor. $356^{\mathrm{b}} \mathrm{ff}$., where the conclusion is that it is due to the heat of the earth.
 ${ }^{4}$ The words seem to be a note explaining partes terrae.

[^57]: ${ }^{1}$ The argument seems to be that, since we see that water is above the earth, the saltness of the sea must be due to something other than the admixture of the element of earth, otherwise the earth would sink and the water would become fresh. The sentence quae aqua . . elemen. tum is omitted, following Meyer.
 ${ }^{2}$ Cf. Meteor. $355^{\text {b }} 3$ ff. ${ }^{3}$ Cf. Meteor. $359^{\text {a }} 12$ ff.
 ${ }^{4}$ Reading mergunt with Cod. G. I. ${ }^{5}$ Cf. Meteor. $359^{\text { }} 16$.
 ${ }^{6}$ i.e. salt may also be produced from fresh water, just as it is given off by animals, which drink fresh water, in the form of sweat.

[^58]: ${ }^{1}$ Reading in for $a b$: 'suspicor praepositionem Arabicam hic non $a b$ sed in vertendam fuisse' (Meyer).
 ${ }^{2}$ i.e. the nutriment supplied by food.
 ${ }^{3}$ Cf. G. A. $762^{\mathrm{a}} 18 \mathrm{ff}$.

[^59]: ${ }^{1}$ Nec in superfluo est, i.e. 'nec abundat in ea ' (Meyer).
 ${ }^{2}$ Reading exigit with the Basle MS.
 ${ }^{3}$ Reading solis for soli. ${ }^{4}$ Reading longe.
 "Montes, a nominative absolute due to translation of the Arabic, in which such nominatives are common (cf. below $825^{\text {b }} 19$). 'Vertendum fuisset in montibus' (Meyer).

[^60]: ${ }^{1}$ Quod . . . vehementer, another nominative absolute due to the Arabic original, cp. above, $825^{\text {a }} 32$.
 ${ }^{2}$ Digerere appears to be equivalent to the Aristotelian $\pi \epsilon \in \sigma \epsilon t$.

[^61]: ${ }^{1}$ Nenufar $=$ nymphaea (Meyer).
 ${ }^{2}$ Reading with the Basle MSS. repercutietur.
 ${ }^{3}$ Lenibus altis, 'modice altis' (Meyer).
 4 'vertendum fuisse suspicor: et quod eo, ut cibus fiat, non pervenit' (Meyer).
 ${ }^{5}$ Species may be used here either in its ordinary sense as above, or else in its technical sense of 'plants used for medicinal purposes' as in 826° 3.
 ${ }_{6}^{62} 83^{\text {b }} 26$.
 7 'Comprehensio eius est, i.e. deprehenditur, invenitur' (Meyer).

[^62]: ${ }^{1}$ Quod remanet de planta, lit. the rest of the plant.
 ${ }^{2}$ Reading considet for consideratur.
 ${ }^{3}$ Prope solem $=$ ad orientem (Meyer). ${ }^{4}$ See note on $826^{2} 14$.
 ${ }^{5}$ ' Contradictio in adiecto esse videtur, quia solis recessus dierum longitudinem corripit, noctesque proiucit. Hic autem producere pro efficere, constituere, longitudinem pro definito temporis spatio sive longiori sive breviori dicta esse apparet' (Meyer).

[^63]: ${ }^{1}$ A nominative absolute due to translation from the Arabic, cf. $825^{a} 32,{ }^{\text {b }} 19$.
 ${ }^{2}$ Reading inundubit for mundabit: the Creek version has $\pi \lambda \eta \mu-$ $\mu \nu \rho \eta \sigma \eta$.

[^64]: ${ }^{1}$ This sentence is transferred to this place by Meyer from 11. 9-11 below, where it makes no sense. Jozis baibu is, according to Meyer, the Arabic tharfa jonani, the Greek $\mu \nu \rho i \kappa \eta$, tamarisk.
 ${ }^{2}$ Transferring est quoque . . . brerba Jovis to the end of chapter vi, and omitting adhuc... operationes with G ii.

[^65]: ${ }^{1}$ Et alterata sunt folia, 'in veros fructus mutata sunt ' (Meyer).
 ${ }^{2}$ 'thin' as opposed to the 'unctuosus humor' of which the fruit is made up.

[^66]: ${ }^{1}$ Casuram is due to a misunderstanding of the Arabic quscinir ($=$ corte x).
 ${ }^{2}$ Reading materive maturae, suggested by Meyer.

[^67]: ${ }^{1}$ Reading qualitate.
 ${ }^{2}$ Reading positus humorum motus (the Basle MS. has positus humor motuts). In animals the first concoction of the nutritive matter takes place in the animal ; in plants it takes place in the earth before the nutritive matter is absorbed, cp. $P . A .650^{\circ} 20$.
 ${ }^{3}$ Meyer shows that the Arabic preposition should have been rendered by apud rather than secundum.
 ${ }^{4}$ Omitting et pyramidabuntur with G i.

[^68]: ${ }^{1}$ Reading ulmum.

[^69]: ${ }^{1}$ 1 Reading calorem.
 2 Ind, as we have just seen, the heat is retained by the moisture.
 ${ }^{3}$ According to Meyer this is calotropis procera Rob. Browni.

[^70]: ${ }^{1}$ In barbis, Arabic in burbâs, i.e. in puteis (Meyer).

[^71]: ${ }^{1}$ Meyer thinks that the Greek original probably had $\sigma \tau \rho \chi^{\chi} \chi^{\nu} o u$ $i \pi \nu \omega \tau<\kappa о i$, which was translated by the Arabic balan, which the Latin translated by myrobalani.
 ${ }^{2}$ Reading superfiuae.

[^72]: ${ }^{1}{ }^{\circ} \nu \omega \nu$: ${ }^{i} \pi \pi \omega \nu$ Beckm. ; but cf. Plin. viii. 30, Oppian, Ven. iii. 205.

[^73]:
 ${ }^{2}$ Because of the hardness of the honey.
 into the text from a marginal gloss. Apelt conj。 $\pi \omega \mu \dot{\sigma} \sigma a \nu \tau \epsilon s$ for $\pi \circ \stackrel{\eta}{-}$ баעтєs, rejecting $\dot{\eta} \mu i \sigma \epsilon a: c f .845^{\text {a }} 6$.

[^74]: ${ }^{1}$ Meziriac conj. ò ϕ toßópovs.
 ${ }^{2}$ The MSS. read Kúr $\rho \varphi$. Marsilius Cagnatus suggests Гvápe (one of the Sporades) on the authority of Antigonus Caryst. c. 21, and Plin. viii. 57.
 ${ }^{3}$ The weasel is not broad-faced. It is doubtful what animal Aristotle is referring to. Cf. Bonitz's Index, $145^{\text {b }} 43$.

[^75]: ${ }_{4}^{1}$ Elk, or reindeer. ${ }^{2}$ Sithonia? (conj. Sylburg). ${ }^{3}$ Alum-slate ?.
 ${ }^{4}$ Reading with Apelt tiva єiomvoŋ́v instead of vulg. тives $\gamma \bar{\eta} \nu$. This local use of $\epsilon \sigma \pi \nu o \eta$ is peculiar.

[^76]: ${ }^{1}$ Cod. Vind., with two other MSS., has $\mu a \rho \iota \theta$ áv, for which Salmasius suggests vá $\phi \theta a \nu$. Sylburg suggests $\theta_{p a k i a \nu, ~ t h e ~ T h r a c i a n ~ s t o n e ~ b e i n g ~}^{\text {a }}$ mentioned in c. II5. Cf. Alexandri Problemata, p. 322 入itos θ paxias,

[^77]: ${ }_{2}^{1}$ Meursius conj. тò λ_{ϵ}. Koúpıov. Cf. Strabo, xiv. p. 683.
 2 i.e. unsmelted, solid.
 ${ }^{3}$ Identified with the Durius, mod. Douro. Cf. Rose, Arist. frag., p. 206 (Teubner). Beckm. conj. $\Theta є \rho \mu \omega \delta \bar{\omega} \nu$ (in Cappadocia).

 * Amisuswas a town in Pontus, mod. Eski Samsun. Rose conj. $\grave{\sigma} \dot{\eta} \mu o v$.

[^78]: ${ }^{1}$ Beckm. conj. 廿' $\gamma \mu a \sigma \iota \nu . \quad{ }^{2}$ At Athens.
 $\chi^{\lambda} \omega \rho a ́$ by $\lambda \epsilon \cup к a ́$.
 ${ }^{4}$ Perhaps 'six' should be read, as ξ ' $=60$ might easily arise from $\tilde{\epsilon} \xi$. Schol. Theocr. iv. 7 says ókтф́.

[^79]: have expected $\epsilon_{\imath} \nu \Pi и \lambda \iota \kappa \hat{\eta}$ ，as the Palici were twin sons of Zeus and Thalia，whose temple stood near a volcanic lake，in which two jets of gas throw up the water to a great height，and hence became sacred to the two indigenous deities，called Palici ס九̀̀ тò àmotavóvтas mí入ıン єis àvӨрஸ́trous iккє́ σ Өt．Cf，Sotion，8．Steph．Byzant．Падıкй．

[^80]: ${ }^{1}$ Read oủס̀̀ à $\emptyset o \delta \epsilon v ́ o v \tau a . ~$

[^81]:
 ${ }^{2}$ Po.
 ${ }^{3}$ For the story of the tears of the Heliades being changed into amber cf. Ov. Met. ii. 365. So Marcianus, the geographer, describes amber

[^82]: ${ }^{1}$ Reading ' π^{\prime} aủr ω. ν.
 ${ }^{2}$ Hawkweed.
 ${ }^{3}$ Balearic.
 ${ }^{4}$ i. e. Sardinia, Sicily, Cyprus, Crete, Euboea, Corsica, and Lesbos. Timaeus ap. Strabo, xiv. p. 967.

[^83]: ${ }^{1}$ A three-pronged fishing-spear, called in Scotland a leister.
 ${ }^{2}$ Arno. Cf. Strab. v. 340.

[^84]: ${ }^{1}$ Steph. Byzant., who has copied these words, gives Oiva as the name of the city. Victorius reads Oủえaテ́́ppa (=Volaterra). The description in the text corresponds with Strabo's account of Volaterra, v. p. I54.
 ${ }^{2}$ Black-haired.
 ${ }^{3}$ Cod. Vind. какє́ттаע (some MSS. Maкє́ $\pi \pi a \nu$). The correction was made by a later hand. The Silarus seems meant, cp. Sil. Ital. viii. 582.

[^85]: ${ }^{1}$ Sc. Heracles.
 ${ }^{2}$ Gr. ǐ ${ }^{\nu 0 s}$.

[^86]: ${ }^{1}$ It may be mentioned that the Greeks to-day call the Ionian islands the ${ }^{\text {' }} \mathrm{E} \pi \tau$ ávnoos.
 ${ }^{2}$ Clemens Alex. vi. 756 (288) relates that there were similar caves in Britain and Persia, where cymbals and shouts of armies were heard, which he attributes to the winds.
 ${ }_{6}{ }^{3}$ i. e. birdless. ${ }^{4}$ Fire-blazing. ${ }_{5}$ Minervae Promontorium.
 ${ }^{6}$ Reading toùs kó λ mous with Salmasius: MSS. тoîs кó $\lambda \pi$ тots. These are S. Cumanus and S. Paestanus.

[^87]: cival, which is supported by the Latin translation in Bekker. The manuscript reading oiov $\tau, \vec{\epsilon}, \vec{a}$. єivat seems to involve a contradiction.

 * Symplegades.
 ${ }^{4}$ Elba.

[^88]: ${ }^{1}$ sc. to the goddess.
 ${ }^{2} \mathrm{Gr}$. єiौeí
 ${ }^{3}$ Il. vi. 442 , vii. 297 , xiv. 105, xviii. 122.
 ${ }^{4}$ חevkevtivots S^{a}. The Peucetii were a people of Apulia.

[^89]: ${ }^{1} \mathrm{sc}$. the necklace. $\quad{ }^{2}$ We should probably read rîs $\theta \epsilon o \hat{v}$.
 ${ }^{3}$ This is difficult. Natalis renders 'cum . . . et thoros et umbracula faciant ex croco' : so Montesaurus--' lectulos tentoriave sibi ex eo croco praeparant'. Schnitzer—machen sie ihre Matratzen u. Zeltdecken aus Safran. But probably A. means that they strew their couches and stages with the flowers of saffron, instead of the mere essence. Cf. Lucret. ii. 416 ; Ovid, A. A. i. 104.

 ${ }^{6}$ i. e. heavenly. Beckm. reads 「óvıov, Cod. Vind. Oủviov.

[^90]: ${ }^{1}$ i.e. Venetians. $\quad{ }^{2}$ Beckm. reads Chalcis. ${ }^{3}$ i. e. Beetles' death.

[^91]: ${ }^{1}$ Aov́бoıs Sylb.: MSS. колоv́бoıs. Antigonus, 152, on the authority of Theopompus, makes the same statement with regard to Lusi. So Plin. xxxi. 2.
 ${ }^{3}$ Conj. Brodaeus instead of MS. 'Atגaעtikळy. Holsten. conj.
 Bussemaker. Codex Vindobon. 'A $\theta \pi \lambda a t i v \omega v$. (The point beneath π implies that it is spurious.)

[^92]: ${ }^{1}$ Or vitriol. ${ }^{2}$ Polycritus probably. Cf. c. 112. Sylburg thinks that these two chapters should be connected together.

[^93]: ${ }^{1}$ The Laurentian MS. reads $\sigma v \gamma \kappa \lambda \epsilon \iota \sigma \mu \circ ́ \nu$: so Beckm. The Cod. Vind. has $\sigma v \gamma \kappa \lambda v \sigma \mu o ́ \nu . ~{ }^{2}$ lit. make the prospect.
 ${ }^{3} \pi \rho \eta \sigma \tau \eta \rho \omega \nu$. The bite of these snakes caused the victim to swell ($\pi \rho \dot{r}, \theta \omega$), and produced burning thirst. Cf. Lucan ix. 791 'torridus prester'. Cf. Diosc, ed. Spengel, 11. 71. 675. Lenz, Zool. d. Gr. u. Röm. 469.
 ${ }^{4}$ i, e. phoenix.
 ${ }^{5}$ Nicander Alex. 187 has фoıvós = фóvos. Cf. фovev́w.

[^94]: ${ }^{1}$ In Thessaly. ${ }^{2}$ i. e. temple of Ismenian Apollo.
 ${ }^{3}$ Utica lay between the Hermaeum Promontorium, mod. Râs el Kanâis, and the promontory of Apollo, mod. Râs Sidi Ali. Cf. Kiepert, who identifies the latter with C. Bon, though others identify it with C. Zibeeb, or C. Farina.

[^95]: ${ }^{1}$ A Phoenician settlement, probably the Tarshish of Scripture. It has been identified with the city of Carteia on Mt. Calpe, mod. Gibraltar.

[^96]: ${ }^{1}$ Similar to this was the locust called ópıoнixos. That in the text may be the wingless locust called áaipakos or övos by Dioscor. ii. 57, who says that the Libyans at Leptis eat them greedily.

[^97]: ${ }^{1}$ Bonitz conj. éфधбтá $\mu \in \nu 0 \nu$.
 ${ }^{2}$ Cf. c. 43.
 ${ }^{3}$ The Schol. on Theocr. 24. 88 explains the word as ákav $\theta \hat{\omega} \delta \in s$ фuròv

[^98]: AR. M. A.

[^99]: ${ }^{1}$ Phile, p. 9, states that beetles also die from this, while Eustath. says that if smeared with an extract of roses they die at once.
 ${ }_{2}$ Tiryns ? conj. Holsten from Plin. viii. 59. It is asserted that the scorpions of Mt. Latmos do just the reverse. Cf. Antigonus, 18.

[^100]: ${ }^{1}$ i.e. who watches over oaths.
 ${ }^{2}$ It was called $\pi a ́ \gamma \kappa v \phi o s$, and à $\sigma \tau \eta$. The Schol. on Arist. Nub. 1001 says that the sacred olives of Athene on the Acropolis were also called норiat.
 ${ }^{3}$ Cf. Ar. Poet. 9.
 D 2

[^101]: ${ }^{1}$ lit. maiden bed-chamber.
 ${ }^{3}$ i.e. love-plant.

[^102]: 2 i. e. shaking-plant.
 4 i. e. putrefaction-serpents.

[^103]: ${ }^{1}$ A river of Aetolia, Plut. de Fluv. 8.
 ${ }^{2}$ It was called $\sigma a ́ p \iota \sigma \sigma a$ from its shape.
 ${ }^{3}$ In Phrygia, sacred to Cybele. It is elsewhere written Béє́кvутоs.

[^104]: ${ }^{1}$ A mountain of Lydia, mod. Boz-dagh, from which the Pactolus rises.
 ${ }^{2}$ She was also called Orthia, from NIt. Orthium or Orthosium in Arcadia. Cf. Hesych. 'ОрӨia," Артє

[^105]: ${ }^{1} 848^{\mathrm{b}}$ 12. Reading (with Par. A) u vi τ.
 $2848^{b} 15$. This proposition is known as the Proof of the Parallelogram of Forces and Distances.
 ${ }^{3} 848^{\mathrm{b}}$ 16. Reading тò $\mu \hat{\epsilon} \nu$ A фє $\rho є \sigma \theta \omega$.

[^106]: ${ }^{1} 849^{\text {a }}$ 1. Omitting $\kappa a \tau^{\prime} \epsilon \dot{\theta} \theta \epsilon i a v$ which, as Capelle says, is probably corrupt. If not, it must mean moving momentarily straight, and being immediately deflected. If it continued straight, it would not come back to the original position.

[^107]: ${ }^{1} 850^{\circ} 27$. i. e. the figure $K \wedge O \Theta$ is greater than the figure KPA by twice the triangle $\mathrm{K} \Lambda \Theta$.
 ${ }^{2} 850^{3}$ 29. Reading tò OK for tò K ; Capelle apparently uses this reading in his translation, but has not altered the text.
 ${ }^{3} \mathrm{C} p .847^{\mathrm{b}} 2$.

[^108]: ${ }^{1} 85^{\text {a }}$ Io. The author's theory seems to be that in a continuous

[^109]: ${ }^{1} 851^{2} 40$. The only effect of raising the yard-arm would be to make the vessel heel over more with a side wind or to depress the bows if the wind was astern, or the stern if the wind were ahead. The most probable explanation is that the Greek sailor, being essentially a coaster, preferred a high sail in order to catch the wind which might be cut off by hills and cliffs.
 ${ }^{2} 851^{\text {b }}$ 10. Reading with Bussemaker $\delta \iota{ }^{\circ}$ for ö.

[^110]: ${ }^{3} 851^{\text {b }} 24$. i. e. the circumference which forms an angle with the ground.
 ${ }^{2} 851^{\mathrm{b}} 32$. i. e. if the circle be divided by the diameter into two halves a and β, when the circle is rolled forward part of β will be transferred to a. The author does not perceive that it is equally true that part of a is transferred to β.
 includes both (I) the tendency of bodies at rest to remain at rest, and (2) the tendency of bodies in motion to continue in motion.

[^111]: ${ }^{1} 85^{\mathrm{b}} 38$. The angles here compared are those made by the diameters of the two circles and a portion of the circumference. The angle aßo is greater than the angle $\epsilon \beta \gamma$ in proportion as the diameter $a \beta$ is greater than the diameter $\epsilon \beta$.
 ${ }^{2} 852^{\mathrm{a}} 5$. e.g. the potter's wheel.
 ${ }^{3} 852^{a} 7$. e. g. the pot on the potter's wheel.

 - Ch. I.

[^112]: ${ }^{1} 82^{2}$ 19. i.e. if the same weight is put on a large roller and upon a small one the large roller will work more quickly.
 ${ }^{2}$ Ch. I. $\quad{ }^{3}$ Cf. $85^{\text {b }} 37$ ff. $\quad 4852^{\mathrm{a}} 28$. Reading кıvíret.

[^113]: ${ }^{1} 852^{\text {b }}$ 12. Reading, as suggested by Capelle, $\dot{\omega} \sigma a v i \tau \omega s$ for oi avirot. obvos is a windlass or ' wheel and axle' for raising weights. In the figure a is the छúdov, round which the rope winds to which the weight γ is attached: β are handles used to turn the windlass.
 ${ }_{2}$ i.e. lighter and broader.
 ${ }^{3}$ i.e. stouter and narrower.
 a 852^{b} 14. i.e. the rest of the windlass outside the gúnov.
 ${ }^{5}$ i.e. lighter and broader.

[^114]: ${ }^{1}$ Reading with Par. B qò av̉rò μ '́ $\gamma \epsilon \theta$ os ξ 自えov.

[^115]: ${ }^{1} 853^{\text {a }} 15$. 'Tenendum scilicet Aristoteli proprium esse verbum aipeoӨat (elevari) ad motum oneris in vecte indicandum, etiamsi caeteroquin nulla cleratio, sed potius contrarius motus, locum habeat, (Capelle). Cf. $854^{\text {b }} 6$.

[^116]: ${ }^{1} 853^{\text {b }}$ II. Reading $\mathfrak{\epsilon ́ \tau \epsilon ́ \rho a s ~ f o r ~} a \hat{\tau} \eta \hat{s}$.

[^117]: ${ }^{1} 853^{b} 25$. The steelyard here described is that now known as the Danish steelyard as distinguished from the common or Roman steelyard.
 $\stackrel{\iota}{\iota} \sigma o v \kappa \tau \lambda .$, and omitting $\tau \hat{\omega} \nu$ with Capelle.
 ${ }^{3} 854^{\text {a }} 5$. Reading ó $\sigma \tau a \theta \mu$ ós.

[^118]: ${ }^{1} 854^{\text {a }} 10$. 'Inverted' because the cord is regarded as supporting from above, whereas the fulcrum supports from below; but the cord really supports below, the beam resting on the loop.

[^119]: ${ }^{1} 854^{\text {a }} 34$. i. e. the force which would be brought into use if the nut were broken by a blow.
 ${ }^{2} 854^{\text {b }} 2$. Omitting $v \phi^{\prime} \AA \nu$, which is clearly corrupt, and placing a comma after äкра.
 ${ }^{3} 854^{\text {b }} 5$. ä́pбєt . . . aípoyrat, see note on $853^{\text {a }}$ I 5 .
 ${ }^{4} 854^{\text {b }}$ II. Omitting $\tau \bar{\eta} s$ A, the reading of Par. B, and probably a gloss: $\tau 0 \hat{v}$ of $W^{\text {a }}$ and Par. A was probably a dittography of roíто.

[^120]: ${ }^{1} 854^{\mathrm{b}} 23$. This is a special case of the theorem known as the ' parallelogram of velocities'.

[^121]: 1855° I2. aủtó which is found in Par. B is necessary here, as a point is referred to, and the neuter is always used to signify a point ($\sigma \eta \mu \epsilon i o \nu$); cf. $854^{\mathrm{b}} 23$, rò A and passim.
 ${ }^{2} 855^{\circ}$ I 3. i.e. from the obtuse angle which the author regards as the apex.

[^122]: ${ }^{1} 855^{\circ} 27$. i.e. in the direction of its length. This is an extreme case in which the angle ГAB (fig. 12) has gradually been made more and more obtuse until $\Gamma \mathrm{A}, \mathrm{AB}$ have become merged in IB. The whole problem of this chapter may be well illustrated by two men (the points a and β) walking in opposite directions along a barge (the side $a \beta$) drifting at the same velocity. If the barge is drifting in the direction of its own length,

[^123]: ${ }^{1} 855^{\mathrm{b}} 9$. i.e. motion under the conditions of case (1).
 ${ }^{2} 855^{\mathrm{b}} 9$. Case (2). $\quad{ }^{3} 855^{\text {b }} 19$. As in case (3).

[^124]: ${ }^{1} 856^{2}$ Io. Reading with Par. A кúкдоs ó μ ккро́s.
 ${ }^{2} 85^{\circ}$ II. Reading тоьои́т ω for тò av̉тó.
 placing a comma instead of a full stop after кai $\delta \mu \epsilon i\} \omega \nu$.
 ${ }^{4} 856^{a} 24$. i.e. the revolutions are not coincident.

[^125]: ${ }^{1} 856^{\mathrm{a}}$ 31. As in case (4), see note on $855^{\mathrm{a}} 30$.
 ${ }^{2} 856^{\text {b }}$ 8. The scholiast in Par. A explains as follows: ${ }^{6}$ Pieces of wood are said to be split in the natural way, when the splitting begins from one end ; this happens when bed-ropes are attached diagonally.'
 ${ }^{3} 856^{\text {b }}$ II. $\sigma \pi$ áprov should probably be read here from $W^{\text {a }}$, meaning the whole rope as opposed to $\sigma \pi a \rho t i o v$, a piece or section of the rope, 1. $6, \& c$.

[^126]: ${ }^{1} 856^{\text {b }}$ I4. Or rather 'the side and the half-side'.
 ${ }^{2} 856^{\mathrm{b}}$ 18. $\sigma \pi$ áprov should probably be read from the Leid. MS.: see last note.
 ${ }^{3} 856^{\text {b }}$ I1-18. On this passage Apelt comments: 'figuram in re incerta non addidimus.' The above figure is taken from Capelle, who, however, says that it is impossible to work out the whole process of stringing the bed. The author indicates the general method to be adopted, when he says that the rope must be passed from A to $\mathrm{B}, \mathrm{\Gamma}, \Delta, \Theta$, and that one rope is to be used and that its two ends come at different corners of the bed. The process can be completed by passing the rope from θ to $\mathrm{E}, \Pi, \mathrm{H}, \mathrm{K}, \mathrm{O}, \Pi, \mathrm{P}, \Sigma, \mathrm{I}, \mathrm{B}, \mathrm{\Gamma}, \mathrm{P}, \Sigma, \mathrm{N}, \Lambda, \Upsilon, \mathrm{M}, \Delta, \Theta$, $\mathbf{Y}, \Lambda, \mathbf{O}, \mathrm{K}, \mathrm{Z}$.
 ${ }^{4} 856^{b} 21-857^{a} 4$. The text of the rest of the chapter, which seeks to prove that less rope is required if the bed is strung crosswise than if it is strung diagonally, is absolutely unintelligible as it stands. Capelle comments: ' Haec verba adeo sunt corrupta ut in iis medendis nequicquam omnes commentatores sudarint.' It has therefore seemed best merely to give a translation of the text as it stands with no attempt at emendation.

[^127]: ${ }^{1} \mathrm{Ch} . \mathrm{I}$.

[^128]: ${ }^{1} 857^{\text {b }} 2$ 2. i.e. when a line is perpendicular the angles on either side of it are equal.

[^129]: ${ }^{1} 858^{a}$ 1. Reading with Capelle $\varepsilon^{3} \theta$ eias for tor

[^130]: ${ }^{1} 858^{b}$ 18. Reading with Capelle oủ rò aủrò γ ríp.

[^131]: limiting member of a series of things called by the same name and sharing the same nature in various degrees. Thus all lines, quâ participating in the same linear nature, are called by the same name, 'line.' The Idea of Line is the Ideal Line which exhibits this linear nature perfectly and precisely: it is the limit from which actual lines derive, or to which they more or less approximate. If all lines were arranged in a series according to the degrees in which linearity obtained expression in them, the Idea of Line would be the first member of the series: it would be the Ideal Line which was just 'Line', neither more nor less.
 ${ }^{2}{ }^{8}$ II. I accept Hayduck's conjecture ádıaipєtos, for the MSS. סıat $\rho \epsilon \tau \dot{\eta}$, of which I can make nothing.

 The theory contemplated by this argument is that in every kind of quantum-and, within spatial quanta, in every type of plane and of solid figure-there is an Ideal Quantum in the sense explained in the preceding note. This Ideal Quantum, it is argued, must be 'indivisible', i.e. simple. For, quâ Ideal, it is the primary member in the series of which it is the Idea; but, if it had parts, they would be prior to it, since the parts are prior to their whole.

 well attested, does not seem right.) $\sigma \hat{\omega} \mu a$ here, as the context shows, is not (as in 1. I3) mathematical solid, but perceptible or physical body.
 ${ }^{4}$ The first two arguments were directed to show that simple units are involved (i) in the Quanta of Mathematics, and (ii) in the Ideal Quanta postulated by a certain metaphysical theory. The present argument is intended to prove that the perceptible bodies (the bodies of Physics and of everyday life) ultimately consist of simple constituents. According to current views, all material things-all aiซ$\theta \eta \tau \dot{a} \sigma \dot{\omega} \mu a \tau a-c o n s i s t e d ~ i n ~ t h e ~$ end of certain elementary constituents, viz. Earth, Air, Fire, and Water. An 'Element' means what is primordial, and therefore (it is argued) it must be without parts.

 The writer does not explain to what precise form of physical theory he is alluding. He seems to be thinking of the somewhat vague and

[^132]: ${ }^{1}$ The above arguments, from $968^{b} 21$, are directed against the first argument ($968^{\text {a }} 2-9$) of the advocates of indivisible lines.
 ${ }^{2}{ }^{2} 17-21$. This is directed against the second argument ($968^{a} 9-14$) of the advocates of indivisible lines.

 катабкєválゃ is used in the sense of 'establishing' (e.g. a conclusion or a definition) in opposition to àvaбкєvá̧ ω, 'to overturn': cf. e.g. Pr. Anal. $43^{a} 1, T o p .102^{a} 15, \& c$. The argument in question aimed at proving the universal affirmative that all lines contain indivisible lines as ultimate constituents. And it tried to base this conclusion on the indivisibility of the Idea of line, i. e. it involved the assumption of Ideas of quanta, or at least of Ideas of lines. But from what holds good of Ideal lines, you can make no valid inference to all lines: the premiss is particular (Ideal Lines, i. e, some lines, are indivisible), and cannot serve as the basis of the universal conclusion which is to be proved.

 Moreover, it is dangerous for the advocates of Ideas to use an argument of this kind. For their opponents may retort that, if the assumption of Ideal quanta leads to the absurdity of indivisible lines, then so much the worse for the Ideal theory. In the sphere of mathematics, they may say, the assumption leads to consequences mathematically absurd; hence the whole theory of Ideas is discredited.
 ${ }^{3}{ }^{2}{ }_{2}$ I. $\pi u ́ \lambda \iota \nu \delta \grave{\iota} \tau \hat{\omega} \nu \nu \omega \mu a \tau \iota \kappa \hat{\omega} \nu \quad \sigma \tau o \iota \chi \epsilon i \omega \nu$. . . The genitive alone scems impossible. I read $\pi a ́ \lambda \iota \nu \delta^{\prime} \epsilon ่ \pi i \tau \omega ิ \nu ~ к \tau \lambda . ~\left(c o l l . ~ 969{ }^{\text {b }} 6\right.$).
 this use of $i \pi=к \epsilon \epsilon \mu \epsilon \nu \eta \nu$, but cf. perhaps Pol. 1331 ${ }^{\text {b }} 36$. In the next two lines $\hat{\sigma} \sigma \omega \mu \hat{a} \lambda \lambda o \nu . . . \tau \dot{\sigma} \sigma \omega \mu \hat{a} \lambda \lambda o \nu$ is an expression without parallel in Aristotle.
 ${ }_{5}^{5} \mathrm{a}_{2} 6$. Reading $\sigma \hat{\omega} \mu a$ каi $\mu \hat{\eta} \kappa о$, and interpreting $\sigma \hat{\omega} \mu a$ as 'geometrical solid ' (not as 'perceptible body'). The difficulty in this reading is that
 tance': but this would be true of $\sigma \hat{\omega} \mu a$ only. Disjunctively, of course, it is true of $\sigma \hat{\omega} \mu a$ and $\mu \hat{\eta} \kappa o s$, but the double кai is certainly awkward. Apelt in his translation adopts the reading of $\mathrm{LNH}^{\mathrm{a}} \mathrm{W}^{\mathrm{a}} \sigma \hat{\omega} \mu a \mu \eta \eta^{\prime} \kappa o u s$: but he

[^133]: ${ }^{1}$ This and the preceding argument are directed against the fourth argument ($968^{\mathrm{a}} 18-\mathrm{b} 4$) of the advocates of indivisible lines.

 The writer urges (i) that Zeno's argument involves a fallacy, which the advocates of indivisible lines have failed to detect $\left(969^{2} 26-30\right)$. (ii) That the movement of thought ('psychical process') is not analogous to the movement of a body. The latter is essentially conditioned by the continuity of the path traversed and the continuity of the body moving : for physical movement takes place in a material substratum-i.e. a solid material body-and along a path in space. (iii) That if the movement of thought were analogous to the movement of a body, more than this would be required to constitute 'counting'. For to 'count' is not merely to traverse a continuous path, coming into instantaneous contact with the infinite succession of points, into which that path may be mathematically resolved: to 'count' essentially involves pausing at the successive steps of the process. (iv) That the argument drawn from 'counting' is an extravagant supposition by which the advocates of 'indivisible lines' are endeavouring to support themselves in an erroneous position-a position really due to their incompetence in failing to detect Zeno's fallacy.
 or 'viz. that'. But it is very doubtful whether ${ }^{\circ} s$ ö ${ }^{\circ}$ t could be used in this way as equivalent to the ordinary oîv ö ${ }^{\circ} \tau$. I propose to read $\dot{\omega}$, ö öt

 ${ }^{3}$ кai ìvaytion.
 ${ }^{4}$ b6-12. This is directed against the fifth argument of the advocates of indivisible lines (cf. above, $968^{\text {b }} 4^{-14}$).

 It is difficult to be sure of the meaning of 969^{b} 10-12, owing to the obscurity of the argument which is being attacked. I think the point of the criticism is as follows. The mathematical definition of commensurate lines can always be satisfied, in the sense that, given any line $A B$, you can always find a line 'commensurate' with it: i.e. any line can become 'commensurate' with some line. But though all lines are 'commensurate' in this sense, they are not all commensurate with one another, and have not got one and the same common measure. Yet the advocates of 'indivisible' lines maintain both (i) that any line can become 'commen-

[^134]: 入óyoıs кıขeiv.

 Since obviously the mathematician adduces no arguments in support of
 however, that we should translate 'more convincing than the mathematical statements': cf. de Caelo $299^{\text {a }} 5$ каiтоь Síкаьо $\hat{\eta}^{\prime} \nu \hat{\eta} \mu \eta$ кьขєiv η
 general principle that we are bound to accept the assumptions and conclusions of the mathematician in the sphere of mathematics, unless very convincing arguments are brought against them.
 ${ }^{2}$ " $31-33$. The first instance adduced by the writer to show that the theory of indivisible lines collides with тà èv тoîs $\mu \mu \theta^{\prime} \mu a \sigma \iota \tau \theta \dot{\epsilon} \mu \in \nu a$.

 We must suppose that it was customary in contemporary mathematics to define line as 'that which is between two points', and straight line as 'that, the middle point of which is in the way of [blocks] both ends'. For the first definition, cf. perhaps Arist. Phys. $231^{b} 9, \sigma \tau \leftarrow \gamma \mu \omega \hat{\omega} \delta^{\prime}$ á ϵ đò $\mu \epsilon \tau a \xi \dot{v} ~ \gamma \rho а \mu \mu \dot{\eta}$. For the second definition, cf. perhaps Plato, Parmen. I 37 E,

 This second instance ($969^{\mathrm{b}} 33-970^{\mathrm{a}} 4$), in which the doctrine collides with mathematics, is a case partly of collision with the definitions of certain mathematical properties, partly of collision with certain demonstrated conclusions.

 The writer complains that the doctrine of indivisible lines plays havoc (i) with the mathematical definition of 'commensurate' lines, and the mathematical distinctions which follow from it; for since all lines whatever consist of a whole number of these unit-lines, it follows that all lines are commensurate $\mu \eta \kappa \kappa \epsilon$, and the mathematical distinction between surds and rational roots vanishes $\left(969^{\text {b }} 33-970^{\text {a }} 2\right)$: and (ii) with the mathematical definition of 'rational' squares, and the distinction between 'rational' and 'irrational' squares which follows from it. For the indivisible lines

[^135]: ${ }^{1} \mathrm{~b}_{2}{ }_{2}-28$. тó ${ }^{\epsilon} \sigma \chi a \tau o \nu$ is the ultimate (or most elementary) thing in the spatial sphere: the not-further-reducible element of extended quanta. On the hypothesis of indivisible lines (the writer urges) this ultimate element of extension is the unit-line, and not the point. If it were the point, then either (a) the point limits the indivisible line $a b$ extra, in which case the addition of a point would increase the length of a line : or (b) the point, which limits the indivisible line, is internal to it: but then the internal limiting point will be a distinguishable part of it, i.e. of that which is ex hypothesi without parts (cf. $970^{\text {b }} 12,13$).
 eivat) indicate the grounds on which (b) might be maintained. If the line $C D$ be joined to the line $A B$, so as to make a continuous line $A D, b$
 and C become one and the same point, the end of $A B$ and the beginning of $C D$ (cf. Arist. Phys. 272 10-13).
 writer has just shown that the theory leads to the difficulty that a line must be terminated by a line and not by a point. From this special difficulty he now passes to the general difficulty that, on the theory, there can be no difference between 'point ' and 'line', except in name.
 äто $\mu \circ \nu$. For $\mu \in ́ \nu \epsilon t$ Hayduck proposed $\mu \eta \dot{\prime} \in t$, and Apelt $\mu \epsilon ̀ \nu$ каi. I accept Apelt's conjecture, and agree with Hayduck in reading tैotat for éviv. In
 follow the editio princeps and insert $\delta \dot{\epsilon}$ after $\sigma \hat{\omega} \mu a$. This $\delta \dot{\epsilon}$ will then correspond to the $\mu^{\prime} \varphi$ in $^{\text {b }} 3 \mathrm{II}$. I agree with Hayduck and Apelt in reading

 ${ }^{4}{ }^{5} 31,32$. Literally, ' F or if one is indivisible, all the others will follow suit.'

 6 " $30-97 \mathrm{I}^{\text {a }} 3$. If there are simple lines, there must be simple planes-viz.

[^136]: ${ }^{1}{ }^{2} 20-24$. I follow Hayduck and Apelt in reading $\epsilon \boldsymbol{i}\langle\gamma$ àp \rangle toû öגov

 ¿ンঠéxorto.
 ${ }^{2}{ }^{2}{ }_{24} \mathbf{2 4}^{-27}$. The writer shows that it is wrong to conceive the limit as ' in contact' with that which it limits, and the point as 'in contact' with the line or any part of it.

 In 1. 24 I read (with Apelt) oũ тò $\pi \epsilon ́ p a s$ for the MSS. оütє π '́pas.
 «imтєтаt, and in 1. 26 I adopt Apelt's conjecture $\hat{\eta} \mu \dot{\epsilon} \nu \nu \dot{u} \nu\langle\gamma p a \mu \mu \grave{\eta}\rangle$ रpa $\mu \mu \bar{\eta} s$

 If the point C becomes the limit of the line $A B$, and is therefore 'in contact' with $A B$, then (i) $B A+C$ is $>B A$ by the point C, and (ii) the terminal point (of the line $C A B$ is the composite point
 $C+A:$ for C and A are in contact whole-with-whole, and there is nothing between them.
 ${ }^{3}{ }^{2}{ }_{2} 8-30$. This passage is obscure owing to its brevity. In 1.281 read (with NW^{a}) $\delta\left\langle\delta^{\prime}\right\rangle$ autoos λ óyos . . ., but perhaps we ought to retain the asyndeton, in spite of its harshness. The writer's style, especially at the end of the treatise, is abrupt and compressed in the extreme. In 1.281 read

 $\gamma \rho а \mu \mu \omega \hat{\nu}$.

 If a line consists of points in contact, division of a line-the actual 'cut' - is itself a point, and (quâ dividing-point) is in contact with the iddjacent points, or halves of a point, which it separates. But if so, we shall be led to the same absurdities as before (cf. 972 ${ }^{\text {a }} 24-27$). Hence

[^137]: ${ }^{1}$ This phrase is explained in $976^{2} 17 \mathrm{ff}$.
 2 i.e. of the elements, as the Atomists and others held.
 3 i.e. qualitative as distinct from quantitative change or change in the arrangement of particles.

[^138]: ${ }^{1}$ Reading with Kern $\chi \omega \rho i s$ ö $\nu \tau a$ for $\chi \omega \rho i \zeta о \nu \tau a\left(c f .977^{2} 6\right.$).
 ${ }^{2}$ Reading є̇ $\pi เ \pi \rho о \sigma \theta$ ย́ $\sigma \epsilon \omega$.
 ${ }^{3}$ Omitting $\tau \hat{\omega} \nu \mu \ell \chi \theta \epsilon \in \nu \tau \omega \nu$ which appears to have come in from above.
 ${ }^{4}$ i.e. an unsupported opinion.
 ${ }^{5}$ Reading $\pi a ́ v \tau \epsilon s$ with the Cod. Lips. : the change to $\pi \dot{\alpha} \nu \tau \omega s$ seems quite unnecessary.

[^139]:
 ${ }^{2}$ Theog. 116-20.

[^140]:
 ${ }^{2}$ i.e. as described in $975^{\text {a }} 24-7$.

[^141]: 1 Diels, Vorsok. 176, 24 ff .
 3 ib. I79, 9.
 $2 \mathrm{ib} .175, \mathrm{I} 7, \mathrm{I} 8$.
 4 i.e. the clements.
 5 i.e. Love and Strife, which Empedocles often reckons amongst the elements.
 ${ }^{6}$ i.e. the Sphere, but the words $\tilde{\eta}^{\oplus} \tilde{\oplus} \nu$ are perhaps to be rejected as a repetition of $\hat{\eta} \epsilon i$ which follows.

 7 Diels, op. cit. 304, 30 ff.

[^142]: ${ }^{1}$ Diels, op. cit. 14, 25 .
 ${ }^{2}$ i.e. shape, cf. Metaphys. $985^{\text {b }} 16$.

[^143]: ${ }^{1}$ Diels, op. cit. 121, 4 ff .
 ${ }^{2}$ Reading 'Avá̧ayópas. Diels, following the Cod. Lips., reads 'AOnvayópas here in the text, while in his note he approves of Beck's emendation 'Avakayópas, which he reads in Vorsok. 139 (cf. 304, 33). The sense is satisfactory, since Anaxagoras, while admitting only one infinite mass, admitted internal diversity. Cod. R^{a} reads

[^144]:
 ${ }^{2}$ Diels, op. cit., 187,4 ff. ${ }^{3}$ i.e. homogeneous.
 ${ }^{4}$ Reading with Bonitz $\tau \grave{o} \mu \grave{\nu} \nu \pi v \kappa \nu o ́ v$, 〈тò ठ̀̀̀ кєуóv〉.
 ${ }^{5}$ The reading of this passage is extremely doubtful and probably too corrupt for anything like certain emendation. Cook Wilson (l.c. pp. I59, 160) shows conclusively that the criticism of the fifth thesis

[^145]:
 ${ }^{2}$ Cf. $974^{\mathrm{a}} 26$ ff.
 ${ }^{3}$ i. e. there is no minimum corporeale; something can always be found smaller than what any one calls the smallest.

[^146]: ${ }^{1}$ Reading $\delta \epsilon$ with Mullach and Apelt and putting a full stop before登 νa.

[^147]: ${ }^{1}$ Diels marks a lacuna here.
 ${ }^{2}$ This passage is corrupt : the above is a translation of Apelt's
 Wilson, Apelt reads тเs) oủk ầ qi̋đӨávotтo vv̂v.
 ${ }^{3}$ Diels marks a lacuna; the following words ov̉ $\lambda є v к o ́ \nu \tau \epsilon$ are probably corrupt.
 ${ }^{4}$ i.e. in I. I7.
 ${ }^{5}$ The whole sentence is corrupt, and Diels's emendation ('ut potui emendavi') not very convincing. In Vorsok. (p.38) he brackets тò äтєцрог. The whole passage is fully discussed by Cook Wilson, Class. Rev. vi. 210 ff .
 ${ }^{6}$ This seems pointless: Cook Wilson suggests oủX $\hat{\epsilon} \nu$ âv ϵ 尚 $\mu o ́ v o \nu$.

[^148]: ${ }^{1}$ Reading ö $\mu o 七 o s . \quad{ }^{2}$ Diels, op. cit., 12 I, 4, 5.
 ${ }^{3}$ These words, as Cook Wilson points out, do not seem to contain any meaning.
 ${ }^{4}$ i. e. in $978^{a} 28 \mathrm{ff}$.
 ${ }^{5}$ i. e. Greek words which have the ' a privative ' prefix.

[^149]: ${ }_{2}^{1}$ Reading with Cook Wilson av̉rìs ràs àmoф́áбєts.
 ${ }^{2}$ Putting a colon after $\mu \eta \delta a \mu \circ \hat{v} \gamma \epsilon \omega ้$

[^150]: ${ }^{1} 979^{\mathrm{a}} 35-979^{\mathrm{b}} \mathrm{I}$. The following appears to be the argument if
 simply, or you may say it is (in a similar sense) because it is $\mu \dot{\eta}$ öv: that is, you may say ' it is' existentially from the outset, or you may proceed to the existential sense from the copulative sense in which you

 i.e. it is not self-evident nor a necessary deduction to proceed from $\dot{\epsilon} \sigma \tau i$ in the copulative to $\hat{\epsilon} \sigma \tau \iota$ in the existential sense; rather δ voiv

[^151]:

 ${ }^{2}$ Sc. true and false indistinguishable. Apelt reads тaúr η.
 ${ }^{3}$ Or ${ }^{6}$ will be ' if Apelt's $\begin{gathered} \\ \sigma \\ \\ \text { Tat } \\ \text { be accepted. }\end{gathered}$
 ${ }^{4}$ Omitting Diels's interpolation.
 ${ }^{5}$ Punctuating with a comma at δ avooú $\mu \epsilon \theta a$, and taking $\epsilon i \delta \dot{\epsilon} \mu \grave{\eta} \ldots$
 ment in support of the protasis, and the corrupt clause $\tau \dot{\circ}$ ov̉v $\kappa \tau \lambda$. as the apodosis. But the sense of the whole passage is very obscure. With Diels's text it is difficult to assign a single meaning to $\phi_{p o v e i \sigma \theta a t ~}^{\text {on }}$ throughout (i.e. either cognition-apprehension-generally, or thought - including imagination-specifically as opposed to perception). Reference should be made to Cook Wilson's treatment of the passage (Class. Rev. vii. 33 ff.), which involves considerable changes in the text, but results in an intelligible meaning.
 ${ }^{6}$ i. e. true and false indistinguishable.

[^152]: ${ }^{1}$ Reading with the Cod. Lips. eingav.
 2 The text here is corrupt, but the sense agrees.

